ipsec.secrets - secrets for IKE/IPsec authentication
The file ipsec.secrets contains a list of secrets. Currently supported secrets
are preshared secrets (PSKs), postquantum preshared keys (PPKs) and XAUTH
passwords. As of libreswan version 4.0, the secrets entries for raw RSA keys
are no longer needed and ignored. All private keys from public keypairs (RSA
or ECDSA) are stored completely in the NSS database and :RSA entries are no
longer required to locate these.
These secrets are used by
pluto(8) , the Libreswan Internet Key Exchange
daemon, to authenticate other hosts. There is another one type of secret,
post-quantum preshared keys (PPKs), that are used for protecting traffic from
quantum computer attack.
XAUTH passwords are stored in plaintext in this file. The secrets file should be
owned by root, and permissions should be set to block all access by others.
(eg: chmod 600)
The file is a sequence of entries and include directives. Here is an example -
each entry or directive must start at the left margin, but if it continues
beyond a single line, each continuation line must be indented.
# sample /etc/ipsec.secrets file for 10.1.0.1
10.1.0.1 10.2.0.1 : PSK "secret shared by two hosts"
# sample roadwarrior
%any gateway.corp.com : PSK "shared secret with many roadwarriors"
# sample server for roadwarriors
myip %any : PSK "shared secret with many roadwarriors"
# an entry may be split across lines,
# but indentation matters
www.xs4all.nl @www.kremvax.ru
10.6.0.1 10.7.0.1 1.8.0.1 : PSK "secret shared by 5 systems"
# sample entry for static PPK
10.1.0.1 10.2.0.1 : PPKS "PPK_ID_1" "post-quantum preshared key for extra security"
# XAUTH password, used with leftusername=username
@username : XAUTH "password"
include ipsec.*.secrets # get secrets from other files
Each entry in the file is a list of indices, followed by a secret. The two parts
are separated by a colon (
:) that is followed by whitespace or a
newline.
An index is an IP address, or a Fully Qualified Domain Name, user@FQDN,
%any or
%any6 (other kinds may come). An IP address may be
written in the familiar dotted quad form or as a domain name to be looked up
when the file is loaded. Be aware that using domain names requires DNS to be
functional before the IPsec tunnel comes up. To denote a Fully Qualified
Domain Name (as opposed to an IP address denoted by its domain name), precede
the name with an at sign (
@).
Matching IDs with indices is fairly straightforward: they have to be equal. In
the case of a "Road Warrior" connection, if an equal match is not
found for the Peer's ID, and it is in the form of an IP address, an index of
%any will match the peer's IP address if IPV4 and
%any6 will
match a the peer's IP address if IPV6.
This file is only read at startup time. If any changes are made to this file,
the pluto daemon should be told to re-read this file using the command
ipsec secrets or
ipsec auto --rereadsecrets. Note that currently
there is no way to add a specific new entry - it's all or nothing.
Smartcard support has been moved from Libreswan to NSS. The location of these
are specified using leftcert/rightcert entries with a PKIX URI in ipsec.conf.
No entry in the secrets file is required for these.
An additional complexity arises in the case of authentication by preshared
secret in IKEv1 Main Mode: the responder will need to look up the secret
before the Peer's ID payload has been decoded, so the ID used will be the IP
address. IKEv1 Aggressive Mode (aggrmode=yes) can be used to work around this,
at the price of leaking the ID in the clear and allowing a brute force attack
against the PSK to be performed offline. PSKs are the least secure
authentication method and should be avoided.
To authenticate a connection between two hosts, the entry that most specifically
matches the host and peer IDs is used. An entry with no index will match any
host and peer. More specifically, an entry with one index will match a host
and peer if the index matches the host's ID (the peer isn't considered). Still
more specifically, an entry with multiple indices will match a host and peer
if the host ID and peer ID each match one of the indices. It is acceptable for
two entries to be the best match as long as they agree about the secret.
Authentication by preshared secret requires that both systems find the identical
secret (the secret is not actually transmitted by the IKE protocol). If both
the host and peer appear in the index list, the same entry will be suitable
for both systems so verbatim copying between systems can be used. This
naturally extends to larger groups sharing the same secret. Thus
multiple-index entries are best for PSK authentication.
When running in FIPS mode, PSK's need to comply to a minimum strength
requirement depending on the integrity and PRF algorithm used. It is
recommended not to use PSK's shorter then 64 random characters.
The token "XAUTH" indicates an IKEv1 eXtended Authentication password.
There should be one index, and it should be in the @FQDN format. The file will
be searched with the XAUTH username, which is usually provided in the
configuration file. XAUTH is otherwise identical to PSK in syntax.
A preshared secret is most conveniently represented as a sequence of characters,
delimited by the double-quote character (
"). The sequence cannot
contain a newline or double-quote. Strictly speaking, the secret is actually
the sequence of bytes that is used in the file to represent the sequence of
characters (excluding the delimiters). A preshared secret may also be
represented, without quotes, in any of supported formats.
Currently supported formats are hexadecimal, base64, and characters.
A hexadecimal text value begins with a
0x (or
0X) prefix and
continues with two-digit groups of hexadecimal digits (0-9, and a-f or A-F),
each group encoding the value of one binary byte, high-order digit first. A
single
_ (underscore) between consecutive groups is ignored, permitting
punctuation to improve readability; doing this every eight digits seems about
right.
A base64 text value begins with a
0s (or
0S) prefix and continues
with four-digit groups of base64 digits (A-Z, a-z, 0-9, +, and /), each group
encoding the value of three binary bytes as described in section 6.8 of RFC
2045. If
flags has the
TTODATAV_IGNORESPACE bit on, blanks are
ignore (after the prefix). Note that the last one or two digits of a base64
group can be
= to indicate that fewer than three binary bytes are
encoded.
A character text value begins with a
0t (or
0T) prefix and
continues with text characters, each being the value of one binary byte.
Post-quantum preshared keys (PPK) can be static. The token “PPKS”
indicates that the following key will be a PPK. The next token is a PPK_ID
that uniquely represents the given PPK. PPK_ID must be represented as a
sequence of characters delimited by the double-quote character (
"). The next token is a PPK itself. The static PPK may be
represented in any format that can be used for representing a preshared
secret. It is recommended that the static PPK be at least 256 bits in order to
provide real security against quantum computer attacks.
The first token of an entry must start in the first column of its line.
Subsequent tokens must be separated by whitespace, except for a colon token,
which only needs to be followed by whitespace. A newline is taken as
whitespace, but every line of an entry after the first must be indented.
Whitespace at the end of a line is ignored (except in the 0t notation for a
key). At the start of line or after whitespace,
# and the following
text up to the end of the line is treated as a comment. Within entries, all
lines must be indented (except for lines with no tokens). Outside entries, no
line may be indented (this is to make sure that the file layout reflects its
structure).
An include directive causes the contents of the named file to be processed
before continuing with the current file. The filename is subject to
"globbing" as in
sh(1), so every file with a matching name is
processed. Includes may be nested to a modest depth (10, currently). If the
filename doesn't start with a
/, the directory containing the current
file is prepended to the name. The include directive is a line that starts
with the word
include, followed by whitespace, followed by the filename
(which must not contain whitespace).
/etc/ipsec.secrets
The rest of the Libreswan distribution, in particular
ipsec.conf(5),
ipsec(8),
ipsec_newhostkey(8),
ipsec_rsasigkey(8),
ipsec_showhostkey(8),
ipsec_auto(8) --rereadsecrets, and
pluto(8) --listen.
Originally designed for the FreeS/WAN project <
https://www.freeswan.org> by D. Hugh Redelmeier. Updated for
Openswan by Ken Bantoft. Updated for Libreswan by Paul Wouters
This file originally stored the private part of RSA keys. This was later on
moved to the NSS database, and all private fields were filled with the CKAID
to enable lookup in the NSS database. This was further obsoleted in libreswan
4.0 and now the secrets file no longer contains any public key pair
information.
If an ID is 0.0.0.0, it will match
%any; if it is
0::0, it will
match
%any6.
Paul Wouters
libreswan secrets files