pem_password_cb, PEM_read_bio_PrivateKey_ex, PEM_read_bio_PrivateKey,
PEM_read_PrivateKey_ex, PEM_read_PrivateKey, PEM_write_bio_PrivateKey_ex,
PEM_write_bio_PrivateKey, PEM_write_bio_PrivateKey_traditional,
PEM_write_PrivateKey_ex, PEM_write_PrivateKey, PEM_write_bio_PKCS8PrivateKey,
PEM_write_PKCS8PrivateKey, PEM_write_bio_PKCS8PrivateKey_nid,
PEM_write_PKCS8PrivateKey_nid, PEM_read_bio_PUBKEY_ex, PEM_read_bio_PUBKEY,
PEM_read_PUBKEY_ex, PEM_read_PUBKEY, PEM_write_bio_PUBKEY_ex,
PEM_write_bio_PUBKEY, PEM_write_PUBKEY_ex, PEM_write_PUBKEY,
PEM_read_bio_RSAPrivateKey, PEM_read_RSAPrivateKey,
PEM_write_bio_RSAPrivateKey, PEM_write_RSAPrivateKey,
PEM_read_bio_RSAPublicKey, PEM_read_RSAPublicKey, PEM_write_bio_RSAPublicKey,
PEM_write_RSAPublicKey, PEM_read_bio_RSA_PUBKEY, PEM_read_RSA_PUBKEY,
PEM_write_bio_RSA_PUBKEY, PEM_write_RSA_PUBKEY, PEM_read_bio_DSAPrivateKey,
PEM_read_DSAPrivateKey, PEM_write_bio_DSAPrivateKey, PEM_write_DSAPrivateKey,
PEM_read_bio_DSA_PUBKEY, PEM_read_DSA_PUBKEY, PEM_write_bio_DSA_PUBKEY,
PEM_write_DSA_PUBKEY, PEM_read_bio_Parameters_ex, PEM_read_bio_Parameters,
PEM_write_bio_Parameters, PEM_read_bio_DSAparams, PEM_read_DSAparams,
PEM_write_bio_DSAparams, PEM_write_DSAparams, PEM_read_bio_DHparams,
PEM_read_DHparams, PEM_write_bio_DHparams, PEM_write_DHparams,
PEM_read_bio_X509, PEM_read_X509, PEM_write_bio_X509, PEM_write_X509,
PEM_read_bio_X509_AUX, PEM_read_X509_AUX, PEM_write_bio_X509_AUX,
PEM_write_X509_AUX, PEM_read_bio_X509_REQ, PEM_read_X509_REQ,
PEM_write_bio_X509_REQ, PEM_write_X509_REQ, PEM_write_bio_X509_REQ_NEW,
PEM_write_X509_REQ_NEW, PEM_read_bio_X509_CRL, PEM_read_X509_CRL,
PEM_write_bio_X509_CRL, PEM_write_X509_CRL, PEM_read_bio_PKCS7,
PEM_read_PKCS7, PEM_write_bio_PKCS7, PEM_write_PKCS7 - PEM routines
#include <openssl/pem.h>
typedef int pem_password_cb(char *buf, int size, int rwflag, void *u);
EVP_PKEY *PEM_read_bio_PrivateKey_ex(BIO *bp, EVP_PKEY **x,
pem_password_cb *cb, void *u,
OSSL_LIB_CTX *libctx, const char *propq);
EVP_PKEY *PEM_read_bio_PrivateKey(BIO *bp, EVP_PKEY **x,
pem_password_cb *cb, void *u);
EVP_PKEY *PEM_read_PrivateKey_ex(FILE *fp, EVP_PKEY **x, pem_password_cb *cb,
void *u, OSSL_LIB_CTX *libctx,
const char *propq);
EVP_PKEY *PEM_read_PrivateKey(FILE *fp, EVP_PKEY **x,
pem_password_cb *cb, void *u);
int PEM_write_bio_PrivateKey_ex(BIO *bp, const EVP_PKEY *x,
const EVP_CIPHER *enc,
unsigned char *kstr, int klen,
pem_password_cb *cb, void *u,
OSSL_LIB_CTX *libctx, const char *propq);
int PEM_write_bio_PrivateKey(BIO *bp, const EVP_PKEY *x, const EVP_CIPHER *enc,
unsigned char *kstr, int klen,
pem_password_cb *cb, void *u);
int PEM_write_bio_PrivateKey_traditional(BIO *bp, EVP_PKEY *x,
const EVP_CIPHER *enc,
unsigned char *kstr, int klen,
pem_password_cb *cb, void *u);
int PEM_write_PrivateKey_ex(FILE *fp, EVP_PKEY *x, const EVP_CIPHER *enc,
unsigned char *kstr, int klen,
pem_password_cb *cb, void *u,
OSSL_LIB_CTX *libctx, const char *propq);
int PEM_write_PrivateKey(FILE *fp, EVP_PKEY *x, const EVP_CIPHER *enc,
unsigned char *kstr, int klen,
pem_password_cb *cb, void *u);
int PEM_write_bio_PKCS8PrivateKey(BIO *bp, EVP_PKEY *x, const EVP_CIPHER *enc,
char *kstr, int klen,
pem_password_cb *cb, void *u);
int PEM_write_PKCS8PrivateKey(FILE *fp, EVP_PKEY *x, const EVP_CIPHER *enc,
char *kstr, int klen,
pem_password_cb *cb, void *u);
int PEM_write_bio_PKCS8PrivateKey_nid(BIO *bp, const EVP_PKEY *x, int nid,
char *kstr, int klen,
pem_password_cb *cb, void *u);
int PEM_write_PKCS8PrivateKey_nid(FILE *fp, const EVP_PKEY *x, int nid,
char *kstr, int klen,
pem_password_cb *cb, void *u);
EVP_PKEY *PEM_read_bio_PUBKEY_ex(BIO *bp, EVP_PKEY **x,
pem_password_cb *cb, void *u,
OSSL_LIB_CTX *libctx, const char *propq);
EVP_PKEY *PEM_read_bio_PUBKEY(BIO *bp, EVP_PKEY **x,
pem_password_cb *cb, void *u);
EVP_PKEY *PEM_read_PUBKEY_ex(FILE *fp, EVP_PKEY **x,
pem_password_cb *cb, void *u,
OSSL_LIB_CTX *libctx, const char *propq);
EVP_PKEY *PEM_read_PUBKEY(FILE *fp, EVP_PKEY **x,
pem_password_cb *cb, void *u);
int PEM_write_bio_PUBKEY_ex(BIO *bp, EVP_PKEY *x,
OSSL_LIB_CTX *libctx, const char *propq);
int PEM_write_bio_PUBKEY(BIO *bp, EVP_PKEY *x);
int PEM_write_PUBKEY_ex(FILE *fp, EVP_PKEY *x,
OSSL_LIB_CTX *libctx, const char *propq);
int PEM_write_PUBKEY(FILE *fp, EVP_PKEY *x);
EVP_PKEY *PEM_read_bio_Parameters_ex(BIO *bp, EVP_PKEY **x,
OSSL_LIB_CTX *libctx, const char *propq);
EVP_PKEY *PEM_read_bio_Parameters(BIO *bp, EVP_PKEY **x);
int PEM_write_bio_Parameters(BIO *bp, const EVP_PKEY *x);
X509 *PEM_read_bio_X509(BIO *bp, X509 **x, pem_password_cb *cb, void *u);
X509 *PEM_read_X509(FILE *fp, X509 **x, pem_password_cb *cb, void *u);
int PEM_write_bio_X509(BIO *bp, X509 *x);
int PEM_write_X509(FILE *fp, X509 *x);
X509 *PEM_read_bio_X509_AUX(BIO *bp, X509 **x, pem_password_cb *cb, void *u);
X509 *PEM_read_X509_AUX(FILE *fp, X509 **x, pem_password_cb *cb, void *u);
int PEM_write_bio_X509_AUX(BIO *bp, X509 *x);
int PEM_write_X509_AUX(FILE *fp, X509 *x);
X509_REQ *PEM_read_bio_X509_REQ(BIO *bp, X509_REQ **x,
pem_password_cb *cb, void *u);
X509_REQ *PEM_read_X509_REQ(FILE *fp, X509_REQ **x,
pem_password_cb *cb, void *u);
int PEM_write_bio_X509_REQ(BIO *bp, X509_REQ *x);
int PEM_write_X509_REQ(FILE *fp, X509_REQ *x);
int PEM_write_bio_X509_REQ_NEW(BIO *bp, X509_REQ *x);
int PEM_write_X509_REQ_NEW(FILE *fp, X509_REQ *x);
X509_CRL *PEM_read_bio_X509_CRL(BIO *bp, X509_CRL **x,
pem_password_cb *cb, void *u);
X509_CRL *PEM_read_X509_CRL(FILE *fp, X509_CRL **x,
pem_password_cb *cb, void *u);
int PEM_write_bio_X509_CRL(BIO *bp, X509_CRL *x);
int PEM_write_X509_CRL(FILE *fp, X509_CRL *x);
PKCS7 *PEM_read_bio_PKCS7(BIO *bp, PKCS7 **x, pem_password_cb *cb, void *u);
PKCS7 *PEM_read_PKCS7(FILE *fp, PKCS7 **x, pem_password_cb *cb, void *u);
int PEM_write_bio_PKCS7(BIO *bp, PKCS7 *x);
int PEM_write_PKCS7(FILE *fp, PKCS7 *x);
The following functions have been deprecated since OpenSSL 3.0, and can be
hidden entirely by defining
OPENSSL_API_COMPAT with a suitable version
value, see
openssl_user_macros(7):
RSA *PEM_read_bio_RSAPrivateKey(BIO *bp, RSA **x,
pem_password_cb *cb, void *u);
RSA *PEM_read_RSAPrivateKey(FILE *fp, RSA **x,
pem_password_cb *cb, void *u);
int PEM_write_bio_RSAPrivateKey(BIO *bp, RSA *x, const EVP_CIPHER *enc,
unsigned char *kstr, int klen,
pem_password_cb *cb, void *u);
int PEM_write_RSAPrivateKey(FILE *fp, RSA *x, const EVP_CIPHER *enc,
unsigned char *kstr, int klen,
pem_password_cb *cb, void *u);
RSA *PEM_read_bio_RSAPublicKey(BIO *bp, RSA **x,
pem_password_cb *cb, void *u);
RSA *PEM_read_RSAPublicKey(FILE *fp, RSA **x,
pem_password_cb *cb, void *u);
int PEM_write_bio_RSAPublicKey(BIO *bp, RSA *x);
int PEM_write_RSAPublicKey(FILE *fp, RSA *x);
RSA *PEM_read_bio_RSA_PUBKEY(BIO *bp, RSA **x,
pem_password_cb *cb, void *u);
RSA *PEM_read_RSA_PUBKEY(FILE *fp, RSA **x,
pem_password_cb *cb, void *u);
int PEM_write_bio_RSA_PUBKEY(BIO *bp, RSA *x);
int PEM_write_RSA_PUBKEY(FILE *fp, RSA *x);
DSA *PEM_read_bio_DSAPrivateKey(BIO *bp, DSA **x,
pem_password_cb *cb, void *u);
DSA *PEM_read_DSAPrivateKey(FILE *fp, DSA **x,
pem_password_cb *cb, void *u);
int PEM_write_bio_DSAPrivateKey(BIO *bp, DSA *x, const EVP_CIPHER *enc,
unsigned char *kstr, int klen,
pem_password_cb *cb, void *u);
int PEM_write_DSAPrivateKey(FILE *fp, DSA *x, const EVP_CIPHER *enc,
unsigned char *kstr, int klen,
pem_password_cb *cb, void *u);
DSA *PEM_read_bio_DSA_PUBKEY(BIO *bp, DSA **x,
pem_password_cb *cb, void *u);
DSA *PEM_read_DSA_PUBKEY(FILE *fp, DSA **x,
pem_password_cb *cb, void *u);
int PEM_write_bio_DSA_PUBKEY(BIO *bp, DSA *x);
int PEM_write_DSA_PUBKEY(FILE *fp, DSA *x);
DSA *PEM_read_bio_DSAparams(BIO *bp, DSA **x, pem_password_cb *cb, void *u);
DSA *PEM_read_DSAparams(FILE *fp, DSA **x, pem_password_cb *cb, void *u);
int PEM_write_bio_DSAparams(BIO *bp, DSA *x);
int PEM_write_DSAparams(FILE *fp, DSA *x);
DH *PEM_read_bio_DHparams(BIO *bp, DH **x, pem_password_cb *cb, void *u);
DH *PEM_read_DHparams(FILE *fp, DH **x, pem_password_cb *cb, void *u);
int PEM_write_bio_DHparams(BIO *bp, DH *x);
int PEM_write_DHparams(FILE *fp, DH *x);
All of the functions described on this page that have a
TYPE of
DH,
DSA and
RSA are deprecated. Applications should use
OSSL_ENCODER_to_bio(3) and
OSSL_DECODER_from_bio(3) instead.
The PEM functions read or write structures in PEM format. In this sense PEM
format is simply base64 encoded data surrounded by header lines.
For more details about the meaning of arguments see the
PEM FUNCTION
ARGUMENTS section.
Each operation has four functions associated with it. For brevity the term
"
TYPE functions" will be used below to
collectively refer to the
PEM_read_bio_TYPE(),
PEM_read_ TYPE(),
PEM_write_bio_TYPE (), and
PEM_write_TYPE () functions.
Some operations have additional variants that take a library context
libctx and a property query string
propq. The
X509,
X509_REQ and
X509_CRL objects may have an associated library
context or property query string but there are no variants of these functions
that take a library context or property query string parameter. In this case
it is possible to set the appropriate library context or property query string
by creating an empty
X509,
X509_REQ or
X509_CRL object
using
X509_new_ex(3),
X509_REQ_new_ex(3) or
X509_CRL_new_ex(3) respectively. Then pass the empty object as a
parameter to the relevant PEM function. See the "EXAMPLES" section
below.
The
PrivateKey functions read or write a private key in PEM format using
an EVP_PKEY structure. The write routines use PKCS#8 private key format and
are equivalent to
PEM_write_bio_PKCS8PrivateKey(). The read functions
transparently handle traditional and PKCS#8 format encrypted and unencrypted
keys.
PEM_write_bio_PrivateKey_traditional() writes out a private key in the
"traditional" format with a simple private key marker and should
only be used for compatibility with legacy programs.
PEM_write_bio_PKCS8PrivateKey() and
PEM_write_PKCS8PrivateKey()
write a private key in an EVP_PKEY structure in PKCS#8 EncryptedPrivateKeyInfo
format using PKCS#5 v2.0 password based encryption algorithms. The
cipher argument specifies the encryption algorithm to use: unlike some
other PEM routines the encryption is applied at the PKCS#8 level and not in
the PEM headers. If
cipher is NULL then no encryption is used and a
PKCS#8 PrivateKeyInfo structure is used instead.
PEM_write_bio_PKCS8PrivateKey_nid() and
PEM_write_PKCS8PrivateKey_nid() also write out a private key as a
PKCS#8 EncryptedPrivateKeyInfo however it uses PKCS#5 v1.5 or PKCS#12
encryption algorithms instead. The algorithm to use is specified in the
nid parameter and should be the NID of the corresponding OBJECT
IDENTIFIER (see NOTES section).
The
PUBKEY functions process a public key using an EVP_PKEY structure.
The public key is encoded as a SubjectPublicKeyInfo structure.
The
RSAPrivateKey functions process an RSA private key using an RSA
structure. The write routines uses traditional format. The read routines
handles the same formats as the
PrivateKey functions but an error
occurs if the private key is not RSA.
The
RSAPublicKey functions process an RSA public key using an RSA
structure. The public key is encoded using a PKCS#1 RSAPublicKey structure.
The
RSA_PUBKEY functions also process an RSA public key using an RSA
structure. However, the public key is encoded using a SubjectPublicKeyInfo
structure and an error occurs if the public key is not RSA.
The
DSAPrivateKey functions process a DSA private key using a DSA
structure. The write routines uses traditional format. The read routines
handles the same formats as the
PrivateKey functions but an error
occurs if the private key is not DSA.
The
DSA_PUBKEY functions process a DSA public key using a DSA structure.
The public key is encoded using a SubjectPublicKeyInfo structure and an error
occurs if the public key is not DSA.
The
Parameters functions read or write key parameters in PEM format using
an EVP_PKEY structure. The encoding depends on the type of key; for DSA key
parameters, it will be a Dss-Parms structure as defined in RFC2459, and for DH
key parameters, it will be a PKCS#3 DHparameter structure.
These
functions only exist for the BIO type.
The
DSAparams functions process DSA parameters using a DSA structure. The
parameters are encoded using a Dss-Parms structure as defined in RFC2459.
The
DHparams functions process DH parameters using a DH structure. The
parameters are encoded using a PKCS#3 DHparameter structure.
The
X509 functions process an X509 certificate using an X509 structure.
They will also process a trusted X509 certificate but any trust settings are
discarded.
The
X509_AUX functions process a trusted X509 certificate using an X509
structure.
The
X509_REQ and
X509_REQ_NEW functions process a PKCS#10
certificate request using an X509_REQ structure. The
X509_REQ write
functions use
CERTIFICATE REQUEST in the header whereas the
X509_REQ_NEW functions use
NEW CERTIFICATE REQUEST (as required
by some CAs). The
X509_REQ read functions will handle either form so
there are no
X509_REQ_NEW read functions.
The
X509_CRL functions process an X509 CRL using an X509_CRL structure.
The
PKCS7 functions process a PKCS#7 ContentInfo using a PKCS7 structure.
The PEM functions have many common arguments.
The
bp BIO parameter (if present) specifies the BIO to read from or write
to.
The
fp FILE parameter (if present) specifies the FILE pointer to read
from or write to.
The PEM read functions all take an argument
TYPE **x
and return a
TYPE * pointer. Where
TYPE is whatever structure the function uses. If
x is NULL then the parameter is ignored. If
x is not NULL but
*x is NULL then the structure returned will be written to
*x. If
neither
x nor
*x is NULL then an attempt is made to reuse the
structure at
*x (but see BUGS and EXAMPLES sections). Irrespective of
the value of
x a pointer to the structure is always returned (or NULL
if an error occurred).
The PEM functions which write private keys take an
enc parameter which
specifies the encryption algorithm to use, encryption is done at the PEM
level. If this parameter is set to NULL then the private key is written in
unencrypted form.
The
cb argument is the callback to use when querying for the pass phrase
used for encrypted PEM structures (normally only private keys).
For the PEM write routines if the
kstr parameter is not NULL then
klen bytes at
kstr are used as the passphrase and
cb is
ignored.
If the
cb parameters is set to NULL and the
u parameter is not
NULL then the
u parameter is interpreted as a NUL terminated string to
use as the passphrase. If both
cb and
u are NULL then the
default callback routine is used which will typically prompt for the
passphrase on the current terminal with echoing turned off.
The default passphrase callback is sometimes inappropriate (for example in a GUI
application) so an alternative can be supplied. The callback routine has the
following form:
int cb(char *buf, int size, int rwflag, void *u);
buf is the buffer to write the passphrase to.
size is the maximum
length of the passphrase (i.e. the size of buf).
rwflag is a flag which
is set to 0 when reading and 1 when writing. A typical routine will ask the
user to verify the passphrase (for example by prompting for it twice) if
rwflag is 1. The
u parameter has the same value as the
u
parameter passed to the PEM routine. It allows arbitrary data to be passed to
the callback by the application (for example a window handle in a GUI
application). The callback
must return the number of characters in the
passphrase or -1 if an error occurred. The passphrase can be arbitrary data;
in the case where it is a string, it is not NUL terminated. See the
"EXAMPLES" section below.
Some implementations may need to use cryptographic algorithms during their
operation. If this is the case and
libctx and
propq parameters
have been passed then any algorithm fetches will use that library context and
property query string. Otherwise the default library context and property
query string will be used.
The PEM reading functions will skip any extraneous content or PEM data of a
different type than they expect. This allows for example having a certificate
(or multiple certificates) and a key in the PEM format in a single file.
The old
PrivateKey write routines are retained for compatibility. New
applications should write private keys using the
PEM_write_bio_PKCS8PrivateKey() or
PEM_write_PKCS8PrivateKey()
routines because they are more secure (they use an iteration count of 2048
whereas the traditional routines use a count of 1) unless compatibility with
older versions of OpenSSL is important.
The
PrivateKey read routines can be used in all applications because they
handle all formats transparently.
A frequent cause of problems is attempting to use the PEM routines like this:
X509 *x;
PEM_read_bio_X509(bp, &x, 0, NULL);
this is a bug because an attempt will be made to reuse the data at
x
which is an uninitialised pointer.
These functions make no assumption regarding the pass phrase received from the
password callback. It will simply be treated as a byte sequence.
These old
PrivateKey routines use a non standard technique for
encryption.
The private key (or other data) takes the following form:
-----BEGIN RSA PRIVATE KEY-----
Proc-Type: 4,ENCRYPTED
DEK-Info: DES-EDE3-CBC,3F17F5316E2BAC89
...base64 encoded data...
-----END RSA PRIVATE KEY-----
The line beginning with
Proc-Type contains the version and the protection
on the encapsulated data. The line beginning
DEK-Info contains two
comma separated values: the encryption algorithm name as used by
EVP_get_cipherbyname() and an initialization vector used by the cipher
encoded as a set of hexadecimal digits. After those two lines is the
base64-encoded encrypted data.
The encryption key is derived using
EVP_BytesToKey(). The cipher's
initialization vector is passed to
EVP_BytesToKey() as the
salt
parameter. Internally,
PKCS5_SALT_LEN bytes of the salt are used
(regardless of the size of the initialization vector). The user's password is
passed to
EVP_BytesToKey() using the
data and
datal
parameters. Finally, the library uses an iteration count of 1 for
EVP_BytesToKey().
The
key derived by
EVP_BytesToKey() along with the original
initialization vector is then used to decrypt the encrypted data. The
iv produced by
EVP_BytesToKey() is not utilized or needed, and
NULL should be passed to the function.
The pseudo code to derive the key would look similar to:
EVP_CIPHER* cipher = EVP_des_ede3_cbc();
EVP_MD* md = EVP_md5();
unsigned int nkey = EVP_CIPHER_get_key_length(cipher);
unsigned int niv = EVP_CIPHER_get_iv_length(cipher);
unsigned char key[nkey];
unsigned char iv[niv];
memcpy(iv, HexToBin("3F17F5316E2BAC89"), niv);
rc = EVP_BytesToKey(cipher, md, iv /*salt*/, pword, plen, 1, key, NULL /*iv*/);
if (rc != nkey)
/* Error */
/* On success, use key and iv to initialize the cipher */
The PEM read routines in some versions of OpenSSL will not correctly reuse an
existing structure. Therefore, the following:
PEM_read_bio_X509(bp, &x, 0, NULL);
where
x already contains a valid certificate, may not work, whereas:
X509_free(x);
x = PEM_read_bio_X509(bp, NULL, 0, NULL);
is guaranteed to work. It is always acceptable for
x to contain a newly
allocated, empty
X509 object (for example allocated via
X509_new_ex(3)).
The read routines return either a pointer to the structure read or NULL if an
error occurred.
The write routines return 1 for success or 0 for failure.
Although the PEM routines take several arguments in almost all applications most
of them are set to 0 or NULL.
To read a certificate with a library context in PEM format from a BIO:
X509 *x = X509_new_ex(libctx, NULL);
if (x == NULL)
/* Error */
if (PEM_read_bio_X509(bp, &x, 0, NULL) == NULL)
/* Error */
Read a certificate in PEM format from a BIO:
X509 *x;
x = PEM_read_bio_X509(bp, NULL, 0, NULL);
if (x == NULL)
/* Error */
Alternative method:
X509 *x = NULL;
if (!PEM_read_bio_X509(bp, &x, 0, NULL))
/* Error */
Write a certificate to a BIO:
if (!PEM_write_bio_X509(bp, x))
/* Error */
Write a private key (using traditional format) to a BIO using triple DES
encryption, the pass phrase is prompted for:
if (!PEM_write_bio_PrivateKey(bp, key, EVP_des_ede3_cbc(), NULL, 0, 0, NULL))
/* Error */
Write a private key (using PKCS#8 format) to a BIO using triple DES encryption,
using the pass phrase "hello":
if (!PEM_write_bio_PKCS8PrivateKey(bp, key, EVP_des_ede3_cbc(),
NULL, 0, 0, "hello"))
/* Error */
Read a private key from a BIO using a pass phrase callback:
key = PEM_read_bio_PrivateKey(bp, NULL, pass_cb, "My Private Key");
if (key == NULL)
/* Error */
Skeleton pass phrase callback:
int pass_cb(char *buf, int size, int rwflag, void *u)
{
/* We'd probably do something else if 'rwflag' is 1 */
printf("Enter pass phrase for \"%s\"\n", (char *)u);
/* get pass phrase, length 'len' into 'tmp' */
char *tmp = "hello";
if (tmp == NULL) /* An error occurred */
return -1;
size_t len = strlen(tmp);
if (len > size)
len = size;
memcpy(buf, tmp, len);
return len;
}
EVP_EncryptInit(3),
EVP_BytesToKey(3),
passphrase-encoding(7)
The old Netscape certificate sequences were no longer documented in OpenSSL
1.1.0; applications should use the PKCS7 standard instead as they will be
formally deprecated in a future releases.
PEM_read_bio_PrivateKey_ex(),
PEM_read_PrivateKey_ex(),
PEM_read_bio_PUBKEY_ex(),
PEM_read_PUBKEY_ex() and
PEM_read_bio_Parameters_ex() were introduced in OpenSSL 3.0.
The functions
PEM_read_bio_RSAPrivateKey(),
PEM_read_RSAPrivateKey(),
PEM_write_bio_RSAPrivateKey(),
PEM_write_RSAPrivateKey(),
PEM_read_bio_RSAPublicKey(),
PEM_read_RSAPublicKey(),
PEM_write_bio_RSAPublicKey(),
PEM_write_RSAPublicKey(),
PEM_read_bio_RSA_PUBKEY(),
PEM_read_RSA_PUBKEY(),
PEM_write_bio_RSA_PUBKEY(),
PEM_write_RSA_PUBKEY(),
PEM_read_bio_DSAPrivateKey(),
PEM_read_DSAPrivateKey(),
PEM_write_bio_DSAPrivateKey(),
PEM_write_DSAPrivateKey(),
PEM_read_bio_DSA_PUBKEY(),
PEM_read_DSA_PUBKEY(),
PEM_write_bio_DSA_PUBKEY(),
PEM_write_DSA_PUBKEY();
PEM_read_bio_DSAparams(),
PEM_read_DSAparams(),
PEM_write_bio_DSAparams(),
PEM_write_DSAparams(),
PEM_read_bio_DHparams(),
PEM_read_DHparams(),
PEM_write_bio_DHparams() and
PEM_write_DHparams() were deprecated in 3.0.
Copyright 2001-2022 The OpenSSL Project Authors. All Rights Reserved.
Licensed under the Apache License 2.0 (the "License"). You may not use
this file except in compliance with the License. You can obtain a copy in the
file LICENSE in the source distribution or at
<
https://www.openssl.org/source/license.html>.