Algorithm::Combinatorics - Efficient generation of combinatorial sequences
use Algorithm::Combinatorics qw(permutations);
my @data = qw(a b c);
# scalar context gives an iterator
my $iter = permutations(\@data);
while (my $p = $iter->next) {
# ...
}
# list context slurps
my @all_permutations = permutations(\@data);
This documentation refers to Algorithm::Combinatorics version 0.26.
Algorithm::Combinatorics is an efficient generator of combinatorial sequences.
Algorithms are selected from the literature (work in progress, see
"REFERENCES"). Iterators do not use recursion, nor stacks, and are
written in C.
Tuples are generated in lexicographic order, except in "subsets()".
Algorithm::Combinatorics provides these subroutines:
permutations(\@data)
circular_permutations(\@data)
derangements(\@data)
complete_permutations(\@data)
variations(\@data, $k)
variations_with_repetition(\@data, $k)
tuples(\@data, $k)
tuples_with_repetition(\@data, $k)
combinations(\@data, $k)
combinations_with_repetition(\@data, $k)
partitions(\@data[, $k])
subsets(\@data[, $k])
All of them are context-sensitive:
- •
- In scalar context subroutines return an iterator that
responds to the "next()" method. Using this object you can
iterate over the sequence of tuples one by one this way:
my $iter = combinations(\@data, $k);
while (my $c = $iter->next) {
# ...
}
The "next()" method returns an arrayref to the next tuple, if any,
or "undef" if the sequence is exhausted.
Memory usage is minimal, no recursion and no stacks are involved.
- •
- In list context subroutines slurp the entire set of tuples.
This behaviour is offered for convenience, but take into account that the
resulting array may be really huge:
my @all_combinations = combinations(\@data, $k);
The permutations of @data are all its reorderings. For example, the permutations
of "@data = (1, 2, 3)" are:
(1, 2, 3)
(1, 3, 2)
(2, 1, 3)
(2, 3, 1)
(3, 1, 2)
(3, 2, 1)
The number of permutations of "n" elements is:
n! = 1, if n = 0
n! = n*(n-1)*...*1, if n > 0
See some values at <
http://www.research.att.com/~njas/sequences/A000142>.
The circular permutations of @data are its arrangements around a circle, where
only relative order of elements matter, rather than their actual position.
Think possible arrangements of people around a circular table for dinner
according to whom they have to their right and left, no matter the actual
chair they sit on.
For example the circular permutations of "@data = (1, 2, 3, 4)" are:
(1, 2, 3, 4)
(1, 2, 4, 3)
(1, 3, 2, 4)
(1, 3, 4, 2)
(1, 4, 2, 3)
(1, 4, 3, 2)
The number of circular permutations of "n" elements is:
n! = 1, if 0 <= n <= 1
(n-1)! = (n-1)*(n-2)*...*1, if n > 1
See a few numbers in a comment of
<
http://www.research.att.com/~njas/sequences/A000142>.
The derangements of @data are those reorderings that have no element in its
original place. In jargon those are the permutations of @data with no fixed
points. For example, the derangements of "@data = (1, 2, 3)" are:
(2, 3, 1)
(3, 1, 2)
The number of derangements of "n" elements is:
d(n) = 1, if n = 0
d(n) = n*d(n-1) + (-1)**n, if n > 0
See some values at <
http://www.research.att.com/~njas/sequences/A000166>.
This is an alias for "derangements", documented above.
The variations of length $k of @data are all the tuples of length $k consisting
of elements of @data. For example, for "@data = (1, 2, 3)" and
"$k = 2":
(1, 2)
(1, 3)
(2, 1)
(2, 3)
(3, 1)
(3, 2)
For this to make sense, $k has to be less than or equal to the length of @data.
Note that
permutations(\@data);
is equivalent to
variations(\@data, scalar @data);
The number of variations of "n" elements taken in groups of
"k" is:
v(n, k) = 1, if k = 0
v(n, k) = n*(n-1)*...*(n-k+1), if 0 < k <= n
The variations with repetition of length $k of @data are all the tuples of
length $k consisting of elements of @data, including repetitions. For example,
for "@data = (1, 2, 3)" and "$k = 2":
(1, 1)
(1, 2)
(1, 3)
(2, 1)
(2, 2)
(2, 3)
(3, 1)
(3, 2)
(3, 3)
Note that $k can be greater than the length of @data. For example, for
"@data = (1, 2)" and "$k = 3":
(1, 1, 1)
(1, 1, 2)
(1, 2, 1)
(1, 2, 2)
(2, 1, 1)
(2, 1, 2)
(2, 2, 1)
(2, 2, 2)
The number of variations with repetition of "n" elements taken in
groups of "k >= 0" is:
vr(n, k) = n**k
This is an alias for "variations", documented above.
This is an alias for "variations_with_repetition", documented above.
The combinations of length $k of @data are all the sets of size $k consisting of
elements of @data. For example, for "@data = (1, 2, 3, 4)" and
"$k = 3":
(1, 2, 3)
(1, 2, 4)
(1, 3, 4)
(2, 3, 4)
For this to make sense, $k has to be less than or equal to the length of @data.
The number of combinations of "n" elements taken in groups of "0
<= k <= n" is:
n choose k = n!/(k!*(n-k)!)
The combinations of length $k of an array @data are all the bags of size $k
consisting of elements of @data, with repetitions. For example, for
"@data = (1, 2, 3)" and "$k = 2":
(1, 1)
(1, 2)
(1, 3)
(2, 2)
(2, 3)
(3, 3)
Note that $k can be greater than the length of @data. For example, for
"@data = (1, 2, 3)" and "$k = 4":
(1, 1, 1, 1)
(1, 1, 1, 2)
(1, 1, 1, 3)
(1, 1, 2, 2)
(1, 1, 2, 3)
(1, 1, 3, 3)
(1, 2, 2, 2)
(1, 2, 2, 3)
(1, 2, 3, 3)
(1, 3, 3, 3)
(2, 2, 2, 2)
(2, 2, 2, 3)
(2, 2, 3, 3)
(2, 3, 3, 3)
(3, 3, 3, 3)
The number of combinations with repetition of "n" elements taken in
groups of "k >= 0" is:
n+k-1 over k = (n+k-1)!/(k!*(n-1)!)
A partition of @data is a division of @data in separate pieces. Technically
that's a set of subsets of @data which are non-empty, disjoint, and whose
union is @data. For example, the partitions of "@data = (1, 2, 3)"
are:
((1, 2, 3))
((1, 2), (3))
((1, 3), (2))
((1), (2, 3))
((1), (2), (3))
This subroutine returns in consequence tuples of tuples. The top-level tuple (an
arrayref) represents the partition itself, whose elements are tuples
(arrayrefs) in turn, each one representing a subset of @data.
The number of partitions of a set of "n" elements are known as Bell
numbers, and satisfy the recursion:
B(0) = 1
B(n+1) = (n over 0)B(0) + (n over 1)B(1) + ... + (n over n)B(n)
See some values at <
http://www.research.att.com/~njas/sequences/A000110>.
If you pass the optional parameter $k, the subroutine generates only partitions
of size $k. This uses an specific algorithm for partitions of known size,
which is more efficient than generating all partitions and filtering them by
size.
Note that in that case the subsets themselves may have several sizes, it is the
number of elements
of the partition which is $k. For instance if @data
has 5 elements there are partitions of size 2 that consist of a subset of size
2 and its complement of size 3; and partitions of size 2 that consist of a
subset of size 1 and its complement of size 4. In both cases the partitions
have the same size, they have two elements.
The number of partitions of size "k" of a set of "n"
elements are known as Stirling numbers of the second kind, and satisfy the
recursion:
S(0, 0) = 1
S(n, 0) = 0 if n > 0
S(n, 1) = S(n, n) = 1
S(n, k) = S(n-1, k-1) + kS(n-1, k)
This subroutine iterates over the subsets of data, which is assumed to represent
a set. If you pass the optional parameter $k the iteration runs over subsets
of data of size $k.
The number of subsets of a set of "n" elements is
2**n
See some values at <
http://www.research.att.com/~njas/sequences/A000079>.
Since version 0.05 subroutines are more forgiving for unsual values of $k:
- •
- If $k is less than zero no tuple exists. Thus, the very
first call to the iterator's "next()" method returns
"undef", and a call in list context returns the empty list. (See
"DIAGNOSTICS".)
- •
- If $k is zero we have one tuple, the empty tuple. This is a
different case than the former: when $k is negative there are no tuples at
all, when $k is zero there is one tuple. The rationale for this behaviour
is the same rationale for n choose 0 = 1: the empty tuple is a subset of
@data with "$k = 0" elements, so it complies with the
definition.
- •
- If $k is greater than the size of @data, and we are calling
a subroutine that does not generate tuples with repetitions, no tuple
exists. Thus, the very first call to the iterator's "next()"
method returns "undef", and a call in list context returns the
empty list. (See "DIAGNOSTICS".)
In addition, since 0.05 empty @datas are supported as well.
Algorithm::Combinatorics exports nothing by default. Each of the subroutines can
be exported on demand, as in
use Algorithm::Combinatorics qw(combinations);
and the tag "all" exports them all:
use Algorithm::Combinatorics qw(:all);
The following warnings may be issued:
- Useless use of %s in void context
- A subroutine was called in void context.
- Parameter k is negative
- A subroutine was called with a negative k.
- Parameter k is greater than the size of data
- A subroutine that does not generate tuples with repetitions
was called with a k greater than the size of data.
The following errors may be thrown:
- Missing parameter data
- A subroutine was called with no parameters.
- Missing parameter k
- A subroutine that requires a second parameter k was called
without one.
- Parameter data is not an arrayref
- The first parameter is not an arrayref (tested with
"reftype()" from Scalar::Util.)
Algorithm::Combinatorics is known to run under perl 5.6.2. The distribution uses
Test::More and FindBin for testing, Scalar::Util for "reftype()",
and XSLoader for XS.
Please report any bugs or feature requests to
"
[email protected]", or through the web
interface at
<
http://rt.cpan.org/NoAuth/ReportBug.html?Queue=Algorithm-Combinatorics>.
Math::Combinatorics is a pure Perl module that offers similar features.
List::PowerSet offers a fast pure-Perl generator of power sets that
Algorithm::Combinatorics copies and translates to XS.
There are some benchmarks in the
benchmarks directory of the
distribution.
[1] Donald E. Knuth,
The Art of Computer Programming, Volume 4, Fascicle 2:
Generating All Tuples and Permutations. Addison Wesley Professional, 2005.
ISBN 0201853930.
[2] Donald E. Knuth,
The Art of Computer Programming, Volume 4, Fascicle 3:
Generating All Combinations and Partitions. Addison Wesley Professional,
2005. ISBN 0201853949.
[3] Michael Orlov,
Efficient Generation of Set Partitions,
<
http://www.informatik.uni-ulm.de/ni/Lehre/WS03/DMM/Software/partitions.pdf>.
Xavier Noria (FXN), <
[email protected]>
Copyright 2005-2012 Xavier Noria, all rights reserved.
This program is free software; you can redistribute it and/or modify it under
the same terms as Perl itself.