Compress::Raw::Zlib - Low-Level Interface to zlib or zlib-ng compression library
use Compress::Raw::Zlib ;
($d, $status) = new Compress::Raw::Zlib::Deflate( [OPT] ) ;
$status = $d->deflate($input, $output) ;
$status = $d->flush($output [, $flush_type]) ;
$d->deflateReset() ;
$d->deflateParams(OPTS) ;
$d->deflateTune(OPTS) ;
$d->dict_adler() ;
$d->crc32() ;
$d->adler32() ;
$d->total_in() ;
$d->total_out() ;
$d->msg() ;
$d->get_Strategy();
$d->get_Level();
$d->get_BufSize();
($i, $status) = new Compress::Raw::Zlib::Inflate( [OPT] ) ;
$status = $i->inflate($input, $output [, $eof]) ;
$status = $i->inflateSync($input) ;
$i->inflateReset() ;
$i->dict_adler() ;
$d->crc32() ;
$d->adler32() ;
$i->total_in() ;
$i->total_out() ;
$i->msg() ;
$d->get_BufSize();
$crc = adler32($buffer [,$crc]) ;
$crc = crc32($buffer [,$crc]) ;
$crc = crc32_combine($crc1, $crc2, $len2);
$adler = adler32_combine($adler1, $adler2, $len2);
my $version = Compress::Raw::Zlib::zlib_version();
my $flags = Compress::Raw::Zlib::zlibCompileFlags();
is_zlib_native();
is_zlibng_native();
is_zlibng_compat();
is_zlibng();
The
Compress::Raw::Zlib module provides a Perl interface to the
zlib or
zlib-ng compression libraries (see "SEE ALSO"
for details about where to get
zlib or
zlib-ng).
In the text below all references to
zlib are also applicable to
zlib-ng unless otherwise stated.
This section defines an interface that allows in-memory compression using the
deflate interface provided by zlib.
Here is a definition of the interface available:
Initialises a deflation object.
If you are familiar with the
zlib library, it combines the features of
the
zlib functions "deflateInit", "deflateInit2"
and "deflateSetDictionary".
If successful, it will return the initialised deflation object, $d and a $status
of "Z_OK" in a list context. In scalar context it returns the
deflation object, $d, only.
If not successful, the returned deflation object, $d, will be
undef and
$status will hold the a
zlib error code.
The function optionally takes a number of named options specified as "Name
=> value" pairs. This allows individual options to be tailored without
having to specify them all in the parameter list.
For backward compatibility, it is also possible to pass the parameters as a
reference to a hash containing the name=>value pairs.
Below is a list of the valid options:
- -Level
- Defines the compression level. Valid values are 0 through
9, "Z_NO_COMPRESSION", "Z_BEST_SPEED",
"Z_BEST_COMPRESSION", and "Z_DEFAULT_COMPRESSION".
The default is "Z_DEFAULT_COMPRESSION".
- -Method
- Defines the compression method. The only valid value at
present (and the default) is "Z_DEFLATED".
- -WindowBits
- To compress an RFC 1950 data stream, set
"WindowBits" to a positive number between 8 and 15.
To compress an RFC 1951 data stream, set "WindowBits" to
"-MAX_WBITS".
To compress an RFC 1952 data stream (i.e. gzip), set "WindowBits"
to "WANT_GZIP".
For a definition of the meaning and valid values for "WindowBits"
refer to the zlib documentation for deflateInit2.
Defaults to "MAX_WBITS".
- -MemLevel
- For a definition of the meaning and valid values for
"MemLevel" refer to the zlib documentation for
deflateInit2.
Defaults to MAX_MEM_LEVEL.
- -Strategy
- Defines the strategy used to tune the compression. The
valid values are "Z_DEFAULT_STRATEGY", "Z_FILTERED",
"Z_RLE", "Z_FIXED" and "Z_HUFFMAN_ONLY".
The default is "Z_DEFAULT_STRATEGY".
- -Dictionary
- When a dictionary is specified Compress::Raw::Zlib
will automatically call "deflateSetDictionary" directly after
calling "deflateInit". The Adler32 value for the dictionary can
be obtained by calling the method "$d->dict_adler()".
The default is no dictionary.
- -Bufsize
- Sets the initial size for the output buffer used by the
"$d->deflate" and "$d->flush" methods. If the
buffer has to be reallocated to increase the size, it will grow in
increments of "Bufsize".
The default buffer size is 4096.
- -AppendOutput
- This option controls how data is written to the output
buffer by the "$d->deflate" and "$d->flush"
methods.
If the "AppendOutput" option is set to false, the output buffers
in the "$d->deflate" and "$d->flush" methods
will be truncated before uncompressed data is written to them.
If the option is set to true, uncompressed data will be appended to the
output buffer in the "$d->deflate" and
"$d->flush" methods.
This option defaults to false.
- -CRC32
- If set to true, a crc32 checksum of the uncompressed data
will be calculated. Use the "$d->crc32" method to retrieve
this value.
This option defaults to false.
- -ADLER32
- If set to true, an adler32 checksum of the uncompressed
data will be calculated. Use the "$d->adler32" method to
retrieve this value.
This option defaults to false.
Here is an example of using the "Compress::Raw::Zlib::Deflate"
optional parameter list to override the default buffer size and compression
level. All other options will take their default values.
my $d = new Compress::Raw::Zlib::Deflate ( -Bufsize => 300,
-Level => Z_BEST_SPEED ) ;
Deflates the contents of $input and writes the compressed data to $output.
The $input and $output parameters can be either scalars or scalar references.
When finished, $input will be completely processed (assuming there were no
errors). If the deflation was successful it writes the deflated data to
$output and returns a status value of "Z_OK".
On error, it returns a
zlib error code.
If the "AppendOutput" option is set to true in the constructor for the
$d object, the compressed data will be appended to $output. If it is false,
$output will be truncated before any compressed data is written to it.
Note: This method will not necessarily write compressed data to $output
every time it is called. So do not assume that there has been an error if the
contents of $output is empty on returning from this method. As long as the
return code from the method is "Z_OK", the deflate has succeeded.
Typically used to finish the deflation. Any pending output will be written to
$output.
Returns "Z_OK" if successful.
Note that flushing can seriously degrade the compression ratio, so it should
only be used to terminate a decompression (using "Z_FINISH") or when
you want to create a
full flush point (using "Z_FULL_FLUSH").
By default the "flush_type" used is "Z_FINISH". Other valid
values for "flush_type" are "Z_NO_FLUSH",
"Z_PARTIAL_FLUSH", "Z_SYNC_FLUSH" and
"Z_FULL_FLUSH". It is strongly recommended that you only set the
"flush_type" parameter if you fully understand the implications of
what it does. See the "zlib" documentation for details.
If the "AppendOutput" option is set to true in the constructor for the
$d object, the compressed data will be appended to $output. If it is false,
$output will be truncated before any compressed data is written to it.
This method will reset the deflation object $d. It can be used when you are
compressing multiple data streams and want to use the same object to compress
each of them. It should only be used once the previous data stream has been
flushed successfully, i.e. a call to "$d->flush(Z_FINISH)" has
returned "Z_OK".
Returns "Z_OK" if successful.
Change settings for the deflate object $d.
The list of the valid options is shown below. Options not specified will remain
unchanged.
- -Level
- Defines the compression level. Valid values are 0 through
9, "Z_NO_COMPRESSION", "Z_BEST_SPEED",
"Z_BEST_COMPRESSION", and
"Z_DEFAULT_COMPRESSION".
- -Strategy
- Defines the strategy used to tune the compression. The
valid values are "Z_DEFAULT_STRATEGY", "Z_FILTERED"
and "Z_HUFFMAN_ONLY".
- -BufSize
- Sets the initial size for the output buffer used by the
"$d->deflate" and "$d->flush" methods. If the
buffer has to be reallocated to increase the size, it will grow in
increments of "Bufsize".
Tune the internal settings for the deflate object $d. This option is only
available if you are running zlib 1.2.2.3 or better.
Refer to the documentation in zlib.h for instructions on how to fly
"deflateTune".
Returns the adler32 value for the dictionary.
Returns the crc32 value for the uncompressed data to date.
If the "CRC32" option is not enabled in the constructor for this
object, this method will always return 0;
Returns the adler32 value for the uncompressed data to date.
Returns the last error message generated by zlib.
Returns the total number of bytes uncompressed bytes input to deflate.
Returns the total number of compressed bytes output from deflate.
Returns the deflation strategy currently used. Valid values are
"Z_DEFAULT_STRATEGY", "Z_FILTERED" and
"Z_HUFFMAN_ONLY".
Returns the compression level being used.
Returns the buffer size used to carry out the compression.
Here is a trivial example of using "deflate". It simply reads standard
input, deflates it and writes it to standard output.
use strict ;
use warnings ;
use Compress::Raw::Zlib ;
binmode STDIN;
binmode STDOUT;
my $x = new Compress::Raw::Zlib::Deflate
or die "Cannot create a deflation stream\n" ;
my ($output, $status) ;
while (<>)
{
$status = $x->deflate($_, $output) ;
$status == Z_OK
or die "deflation failed\n" ;
print $output ;
}
$status = $x->flush($output) ;
$status == Z_OK
or die "deflation failed\n" ;
print $output ;
This section defines an interface that allows in-memory uncompression using the
inflate interface provided by zlib.
Here is a definition of the interface:
Initialises an inflation object.
In a list context it returns the inflation object, $i, and the
zlib
status code ($status). In a scalar context it returns the inflation object
only.
If successful, $i will hold the inflation object and $status will be
"Z_OK".
If not successful, $i will be
undef and $status will hold the
zlib
error code.
The function optionally takes a number of named options specified as "-Name
=> value" pairs. This allows individual options to be tailored without
having to specify them all in the parameter list.
For backward compatibility, it is also possible to pass the parameters as a
reference to a hash containing the "name=>value" pairs.
Here is a list of the valid options:
- -WindowBits
- To uncompress an RFC 1950 data stream, set
"WindowBits" to a positive number between 8 and 15.
To uncompress an RFC 1951 data stream, set "WindowBits" to
"-MAX_WBITS".
To uncompress an RFC 1952 data stream (i.e. gzip), set
"WindowBits" to "WANT_GZIP".
To auto-detect and uncompress an RFC 1950 or RFC 1952 data stream (i.e.
gzip), set "WindowBits" to "WANT_GZIP_OR_ZLIB".
For a full definition of the meaning and valid values for
"WindowBits" refer to the zlib documentation for
inflateInit2.
Defaults to "MAX_WBITS".
- -Bufsize
- Sets the initial size for the output buffer used by the
"$i->inflate" method. If the output buffer in this method has
to be reallocated to increase the size, it will grow in increments of
"Bufsize".
Default is 4096.
- -Dictionary
- The default is no dictionary.
- -AppendOutput
- This option controls how data is written to the output
buffer by the "$i->inflate" method.
If the option is set to false, the output buffer in the
"$i->inflate" method will be truncated before uncompressed
data is written to it.
If the option is set to true, uncompressed data will be appended to the
output buffer by the "$i->inflate" method.
This option defaults to false.
- -CRC32
- If set to true, a crc32 checksum of the uncompressed data
will be calculated. Use the "$i->crc32" method to retrieve
this value.
This option defaults to false.
- -ADLER32
- If set to true, an adler32 checksum of the uncompressed
data will be calculated. Use the "$i->adler32" method to
retrieve this value.
This option defaults to false.
- -ConsumeInput
- If set to true, this option will remove compressed data
from the input buffer of the "$i->inflate" method as the
inflate progresses.
This option can be useful when you are processing compressed data that is
embedded in another file/buffer. In this case the data that immediately
follows the compressed stream will be left in the input buffer.
This option defaults to true.
- -LimitOutput
- The "LimitOutput" option changes the behavior of
the "$i->inflate" method so that the amount of memory used by
the output buffer can be limited.
When "LimitOutput" is used the size of the output buffer used will
either be the value of the "Bufsize" option or the amount of
memory already allocated to $output, whichever is larger. Predicting the
output size available is tricky, so don't rely on getting an exact output
buffer size.
When "LimitOutout" is not specified "$i->inflate"
will use as much memory as it takes to write all the uncompressed data it
creates by uncompressing the input buffer.
If "LimitOutput" is enabled, the "ConsumeInput" option
will also be enabled.
This option defaults to false.
See "The LimitOutput option" for a discussion on why
"LimitOutput" is needed and how to use it.
Here is an example of using an optional parameter to override the default buffer
size.
my ($i, $status) = new Compress::Raw::Zlib::Inflate( -Bufsize => 300 ) ;
Inflates the complete contents of $input and writes the uncompressed data to
$output. The $input and $output parameters can either be scalars or scalar
references.
Returns "Z_OK" if successful and "Z_STREAM_END" if the end
of the compressed data has been successfully reached.
If not successful $status will hold the
zlib error code.
If the "ConsumeInput" option has been set to true when the
"Compress::Raw::Zlib::Inflate" object is created, the $input
parameter is modified by "inflate". On completion it will contain
what remains of the input buffer after inflation. In practice, this means that
when the return status is "Z_OK" the $input parameter will contain
an empty string, and when the return status is "Z_STREAM_END" the
$input parameter will contains what (if anything) was stored in the input
buffer after the deflated data stream.
This feature is useful when processing a file format that encapsulates a
compressed data stream (e.g. gzip, zip) and there is useful data immediately
after the deflation stream.
If the "AppendOutput" option is set to true in the constructor for
this object, the uncompressed data will be appended to $output. If it is
false, $output will be truncated before any uncompressed data is written to
it.
The $eof parameter needs a bit of explanation.
Prior to version 1.2.0, zlib assumed that there was at least one trailing byte
immediately after the compressed data stream when it was carrying out
decompression. This normally isn't a problem because the majority of zlib
applications guarantee that there will be data directly after the compressed
data stream. For example, both gzip (RFC 1950) and zip both define trailing
data that follows the compressed data stream.
The $eof parameter only needs to be used if
all of the following
conditions apply
- 1.
- You are either using a copy of zlib that is older than
version 1.2.0 or you want your application code to be able to run with as
many different versions of zlib as possible.
- 2.
- You have set the "WindowBits" parameter to
"-MAX_WBITS" in the constructor for this object, i.e. you are
uncompressing a raw deflated data stream (RFC 1951).
- 3.
- There is no data immediately after the compressed data
stream.
If
all of these are the case, then you need to set the $eof parameter to
true on the final call (and only the final call) to
"$i->inflate".
If you have built this module with zlib >= 1.2.0, the $eof parameter is
ignored. You can still set it if you want, but it won't be used behind the
scenes.
This method can be used to attempt to recover good data from a compressed data
stream that is partially corrupt. It scans $input until it reaches either a
full flush point or the end of the buffer.
If a
full flush point is found, "Z_OK" is returned and $input
will be have all data up to the flush point removed. This data can then be
passed to the "$i->inflate" method to be uncompressed.
Any other return code means that a flush point was not found. If more data is
available, "inflateSync" can be called repeatedly with more
compressed data until the flush point is found.
Note
full flush points are not present by default in compressed data
streams. They must have been added explicitly when the data stream was created
by calling "Compress::Deflate::flush" with "Z_FULL_FLUSH".
This method will reset the inflation object $i. It can be used when you are
uncompressing multiple data streams and want to use the same object to
uncompress each of them.
Returns "Z_OK" if successful.
Returns the adler32 value for the dictionary.
Returns the crc32 value for the uncompressed data to date.
If the "CRC32" option is not enabled in the constructor for this
object, this method will always return 0;
Returns the adler32 value for the uncompressed data to date.
If the "ADLER32" option is not enabled in the constructor for this
object, this method will always return 0;
Returns the last error message generated by zlib.
Returns the total number of bytes compressed bytes input to inflate.
Returns the total number of uncompressed bytes output from inflate.
Returns the buffer size used to carry out the decompression.
Here is an example of using "inflate".
use strict ;
use warnings ;
use Compress::Raw::Zlib;
my $x = new Compress::Raw::Zlib::Inflate()
or die "Cannot create a inflation stream\n" ;
my $input = '' ;
binmode STDIN;
binmode STDOUT;
my ($output, $status) ;
while (read(STDIN, $input, 4096))
{
$status = $x->inflate($input, $output) ;
print $output ;
last if $status != Z_OK ;
}
die "inflation failed\n"
unless $status == Z_STREAM_END ;
The next example show how to use the "LimitOutput" option. Notice the
use of two nested loops in this case. The outer loop reads the data from the
input source - STDIN and the inner loop repeatedly calls "inflate"
until $input is exhausted, we get an error, or the end of the stream is
reached. One point worth remembering is by using the "LimitOutput"
option you also get "ConsumeInput" set as well - this makes the code
below much simpler.
use strict ;
use warnings ;
use Compress::Raw::Zlib;
my $x = new Compress::Raw::Zlib::Inflate(LimitOutput => 1)
or die "Cannot create a inflation stream\n" ;
my $input = '' ;
binmode STDIN;
binmode STDOUT;
my ($output, $status) ;
OUTER:
while (read(STDIN, $input, 4096))
{
do
{
$status = $x->inflate($input, $output) ;
print $output ;
last OUTER
unless $status == Z_OK || $status == Z_BUF_ERROR ;
}
while ($status == Z_OK && length $input);
}
die "inflation failed\n"
unless $status == Z_STREAM_END ;
Two functions are provided by
zlib to calculate checksums. For the Perl
interface, the order of the two parameters in both functions has been
reversed. This allows both running checksums and one off calculations to be
done.
$crc = adler32($buffer [,$crc]) ;
$crc = crc32($buffer [,$crc]) ;
The buffer parameters can either be a scalar or a scalar reference.
If the $crc parameters is "undef", the crc value will be reset.
If you have built this module with zlib 1.2.3 or better, two more CRC-related
functions are available.
$crc = crc32_combine($crc1, $crc2, $len2);
$adler = adler32_combine($adler1, $adler2, $len2);
These functions allow checksums to be merged. Refer to the
zlib
documentation for more details.
Returns the version of the
zlib library if this module has been built
with the
zlib library. If this module has been built with
zlib-ng in native mode, this function will return a empty string. If
this module has been built with
zlib-ng in compat mode, this function
will return the Izlib> API verion that
zlib-ng is supporting.
Returns the version of the zlib-ng library if this module has been built with
the
zlib-ng library. If this module has been built with
zlib,
this function will return a empty string.
Returns the flags indicating compile-time options that were used to build the
zlib or zlib-ng library. See the zlib documentation for a description of the
flags returned by "zlibCompileFlags".
Note that when the zlib sources are built along with this module the
"sprintf" flags (bits 24, 25 and 26) should be ignored.
If you are using zlib 1.2.0 or older, "zlibCompileFlags" will return
0.
These function can use used to check if "Compress::Raw::Zlib" was been
built with
zlib or
zlib-ng.
The function "is_zlib_native" returns true if
"Compress::Raw::Zlib" was built with
zlib. The function
"is_zlibng" returns true if "Compress::Raw::Zlib" was
built with
zlib-ng.
The
zlib-ng library has an option to build with a zlib-compataible API.
The c<is_zlibng_compat> function retuens true if zlib-ng has ben built
with this API.
Finally, "is_zlibng_native" returns true if
zlib-ng was built
with its native API.
By default "$i->inflate($input, $output)" will uncompress
all data in $input and write
all of the uncompressed data it has
generated to $output. This makes the interface to "inflate" much
simpler - if the method has uncompressed $input successfully
all
compressed data in $input will have been dealt with. So if you are reading
from an input source and uncompressing as you go the code will look something
like this
use strict ;
use warnings ;
use Compress::Raw::Zlib;
my $x = new Compress::Raw::Zlib::Inflate()
or die "Cannot create a inflation stream\n" ;
my $input = '' ;
my ($output, $status) ;
while (read(STDIN, $input, 4096))
{
$status = $x->inflate($input, $output) ;
print $output ;
last if $status != Z_OK ;
}
die "inflation failed\n"
unless $status == Z_STREAM_END ;
The points to note are
- •
- The main processing loop in the code handles reading of
compressed data from STDIN.
- •
- The status code returned from "inflate" will only
trigger termination of the main processing loop if it isn't
"Z_OK". When "LimitOutput" has not been used the
"Z_OK" status means that the end of the compressed data stream
has been reached or there has been an error in uncompression.
- •
- After the call to "inflate" all of the
uncompressed data in $input will have been processed. This means the
subsequent call to "read" can overwrite it's contents without
any problem.
For most use-cases the behavior described above is acceptable (this module and
it's predecessor, "Compress::Zlib", have used it for over 10 years
without an issue), but in a few very specific use-cases the amount of memory
required for $output can prohibitively large. For example, if the compressed
data stream contains the same pattern repeated thousands of times, a
relatively small compressed data stream can uncompress into hundreds of
megabytes. Remember "inflate" will keep allocating memory until
all the uncompressed data has been written to the output buffer - the
size of $output is unbounded.
The "LimitOutput" option is designed to help with this use-case.
The main difference in your code when using "LimitOutput" is having to
deal with cases where the $input parameter still contains some uncompressed
data that "inflate" hasn't processed yet. The status code returned
from "inflate" will be "Z_OK" if uncompression took place
and "Z_BUF_ERROR" if the output buffer is full.
Below is typical code that shows how to use "LimitOutput".
use strict ;
use warnings ;
use Compress::Raw::Zlib;
my $x = new Compress::Raw::Zlib::Inflate(LimitOutput => 1)
or die "Cannot create a inflation stream\n" ;
my $input = '' ;
binmode STDIN;
binmode STDOUT;
my ($output, $status) ;
OUTER:
while (read(STDIN, $input, 4096))
{
do
{
$status = $x->inflate($input, $output) ;
print $output ;
last OUTER
unless $status == Z_OK || $status == Z_BUF_ERROR ;
}
while ($status == Z_OK && length $input);
}
die "inflation failed\n"
unless $status == Z_STREAM_END ;
Points to note this time:
- •
- There are now two nested loops in the code: the outer loop
for reading the compressed data from STDIN, as before; and the inner loop
to carry out the uncompression.
- •
- There are two exit points from the inner uncompression
loop.
Firstly when "inflate" has returned a status other than
"Z_OK" or "Z_BUF_ERROR". This means that either the
end of the compressed data stream has been reached
("Z_STREAM_END") or there is an error in the compressed data. In
either of these cases there is no point in continuing with reading the
compressed data, so both loops are terminated.
The second exit point tests if there is any data left in the input buffer,
$input - remember that the "ConsumeInput" option is
automatically enabled when "LimitOutput" is used. When the input
buffer has been exhausted, the outer loop can run again and overwrite a
now empty $input.
Although it is possible (with some effort on your part) to use this module to
access .zip files, there are other perl modules available that will do all the
hard work for you. Check out "Archive::Zip",
"Archive::Zip::SimpleZip", "IO::Compress::Zip" and
"IO::Uncompress::Unzip".
This module is not compatible with Unix "compress".
If you have the "uncompress" program available, you can use this to
read compressed files
open F, "uncompress -c $filename |";
while (<F>)
{
...
Alternatively, if you have the "gunzip" program available, you can use
this to read compressed files
open F, "gunzip -c $filename |";
while (<F>)
{
...
and this to write compress files, if you have the "compress" program
available
open F, "| compress -c $filename ";
print F "data";
...
close F ;
See previous FAQ item.
If the "Archive::Tar" module is installed and either the
"uncompress" or "gunzip" programs are available, you can
use one of these workarounds to read ".tar.Z" files.
Firstly with "uncompress"
use strict;
use warnings;
use Archive::Tar;
open F, "uncompress -c $filename |";
my $tar = Archive::Tar->new(*F);
...
and this with "gunzip"
use strict;
use warnings;
use Archive::Tar;
open F, "gunzip -c $filename |";
my $tar = Archive::Tar->new(*F);
...
Similarly, if the "compress" program is available, you can use this to
write a ".tar.Z" file
use strict;
use warnings;
use Archive::Tar;
use IO::File;
my $fh = new IO::File "| compress -c >$filename";
my $tar = Archive::Tar->new();
...
$tar->write($fh);
$fh->close ;
By default "Compress::Raw::Zlib" will build with a private copy of
version 1.2.5 of the zlib library. (See the
README file for details of
how to override this behaviour)
If you decide to use a different version of the zlib library, you need to be
aware of the following issues
- •
- First off, you must have zlib 1.0.5 or better.
- •
- You need to have zlib 1.2.1 or better if you want to use
the "-Merge" option with "IO::Compress::Gzip",
"IO::Compress::Deflate" and
"IO::Compress::RawDeflate".
All the
zlib constants are automatically imported when you make use of
Compress::Raw::Zlib.
General feedback/questions/bug reports should be sent to
<
https://github.com/pmqs/Compress-Raw-Zlib/issues> (preferred) or
<
https://rt.cpan.org/Public/Dist/Display.html?Name=Compress-Raw-Zlib>.
Compress::Zlib, IO::Compress::Gzip, IO::Uncompress::Gunzip,
IO::Compress::Deflate, IO::Uncompress::Inflate, IO::Compress::RawDeflate,
IO::Uncompress::RawInflate, IO::Compress::Bzip2, IO::Uncompress::Bunzip2,
IO::Compress::Lzma, IO::Uncompress::UnLzma, IO::Compress::Xz,
IO::Uncompress::UnXz, IO::Compress::Lzip, IO::Uncompress::UnLzip,
IO::Compress::Lzop, IO::Uncompress::UnLzop, IO::Compress::Lzf,
IO::Uncompress::UnLzf, IO::Compress::Zstd, IO::Uncompress::UnZstd,
IO::Uncompress::AnyInflate, IO::Uncompress::AnyUncompress
IO::Compress::FAQ
File::GlobMapper, Archive::Zip, Archive::Tar, IO::Zlib
For RFC 1950, 1951 and 1952 see
<
https://datatracker.ietf.org/doc/html/rfc1950>,
<
https://datatracker.ietf.org/doc/html/rfc1951> and
<
https://datatracker.ietf.org/doc/html/rfc1952>
The
zlib compression library was written by Jean-loup Gailly
"
[email protected]" and Mark Adler
"
[email protected]".
The primary site for the
zlib compression library is
<
http://www.zlib.org>.
The primary site for the
zlib-ng compression library is
<
https://github.com/zlib-ng/zlib-ng>.
The primary site for gzip is <
http://www.gzip.org>.
This module was written by Paul Marquess, "
[email protected]".
See the Changes file.
Copyright (c) 2005-2023 Paul Marquess. All rights reserved.
This program is free software; you can redistribute it and/or modify it under
the same terms as Perl itself.