NAME
eventtimers — kernel event timers subsystemSYNOPSIS
#include <sys/timeet.h>struct eventtimer; typedef int et_start_t(struct eventtimer *et, sbintime_t first, sbintime_t period); typedef int et_stop_t(struct eventtimer *et); typedef void et_event_cb_t(struct eventtimer *et, void *arg); typedef int et_deregister_cb_t(struct eventtimer *et, void *arg); struct eventtimer { SLIST_ENTRY(eventtimer) et_all; char *et_name; int et_flags; #define ET_FLAGS_PERIODIC 1 #define ET_FLAGS_ONESHOT 2 #define ET_FLAGS_PERCPU 4 #define ET_FLAGS_C3STOP 8 #define ET_FLAGS_POW2DIV 16 int et_quality; int et_active; uint64_t et_frequency; sbintime_t et_min_period; sbintime_t et_max_period; et_start_t *et_start; et_stop_t *et_stop; et_event_cb_t *et_event_cb; et_deregister_cb_t *et_deregister_cb; void *et_arg; void *et_priv; struct sysctl_oid *et_sysctl; };
int
et_register(struct eventtimer *et); int
et_deregister(struct eventtimer *et); void
et_change_frequency(struct eventtimer *et, uint64_t newfreq); ET_LOCK(); ET_UNLOCK(); struct eventtimer *
et_find(const char *name, int check, int want); int
et_init(struct eventtimer *et, et_event_cb_t *event, et_deregister_cb_t *deregister, void *arg); int
et_start(struct eventtimer *et, sbintime_t first, sbintime_t period); int
et_stop(struct eventtimer *et); int
et_ban(struct eventtimer *et); int
et_free(struct eventtimer *et);
DESCRIPTION
Event timers are responsible for generating interrupts at specified time or periodically, to run different time-based events. Subsystem consists of three main parts:- Drivers
- Manage hardware to generate requested time events.
- Consumers
- sys/kern/kern_clocksource.c uses event timers to supply kernel with hardclock(), statclock() and profclock() time events.
- Glue code
- sys/sys/timeet.h, sys/kern/kern_et.c provide APIs for event timer drivers and consumers.
DRIVER API
Driver API is built around eventtimer structure. To register its functionality driver allocates that structure and calls et_register(). Driver should fill following fields there:- et_name
- Unique name of the event timer for management purposes.
- et_flags
- Set of flags, describing timer capabilities:
- ET_FLAGS_PERIODIC
- Periodic mode supported.
- ET_FLAGS_ONESHOT
- One-shot mode supported.
- ET_FLAGS_PERCPU
- Timer is per-CPU.
- ET_FLAGS_C3STOP
- Timer may stop in CPU sleep state.
- ET_FLAGS_POW2DIV
- Timer supports only 2^n divisors.
- et_quality
- Abstract value to certify whether this timecounter is better than the others. Higher value means better.
- et_frequency
- Timer oscillator's base frequency, if applicable and known. Used by consumers to predict set of possible frequencies that could be obtained by dividing it. Should be zero if not applicable or unknown.
- et_min_period, et_max_period
- Minimal and maximal reliably programmable time periods.
- et_start
- Driver's timer start function pointer.
- et_stop
- Driver's timer stop function pointer.
- et_priv
- Driver's private data storage.
CONSUMER API
et_find() allows consumer to find available event timer, optionally matching specific name and/or capability flags. Consumer may read returned eventtimer structure, but should not modify it. When wanted event timer is found, et_init() should be called for it, submitting event and optionally deregister callbacks functions, and the opaque argument arg. That argument will be passed as argument to the callbacks. Event callback function will be called on scheduled time events. It is called from the hardware interrupt context, so no sleep is permitted there. Deregister callback function may be called to report consumer that the event timer functionality is no longer available. On this call, consumer should stop using event timer before the return. After the timer is found and initialized, it can be controlled via et_start() and et_stop(). The arguments are the same as described in driver API. Per-CPU event timers can be controlled only from specific CPUs. et_ban() allows consumer to mark event timer as broken via clearing both one-shot and periodic capability flags, if it was somehow detected. et_free() is the opposite to et_init(). It releases the event timer for other consumers use. ET_LOCK() and ET_UNLOCK() macros should be used to manage mutex(9) lock around et_find(), et_init() and et_free() calls to serialize access to the list of the registered event timers and the pointers returned by et_find(). et_start() and et_stop() calls should be serialized in consumer's internal way to avoid concurrent timer hardware access.SEE ALSO
eventtimers(4)AUTHORS
Alexander Motin <[email protected]>April 2, 2014 | Debian |