NAME

avrdudedriver program for ``simple'' Atmel AVR MCU programmer

SYNOPSIS

avrdude -p partno [-b baudrate] [-B bitclock] [-c programmer-id] [-C config-file] [-A] [-D] [-e] [-E exitspec[,exitspec]] [-F] [-i delay] [-l logfile] [-n] [-O] [-P port] [-q] [-t] [-U memtype:op:filename:filefmt] [-v] [-x extended_param] [-V]

DESCRIPTION

Avrdude is a program for downloading code and data to Atmel AVR microcontrollers. Avrdude supports Atmel's STK500 programmer, Atmel's AVRISP and AVRISP mkII devices, Atmel's STK600, Atmel's JTAG ICE (mkI, mkII and 3, the latter two also in ISP mode), programmers complying to AppNote AVR910 and AVR109 (including the Butterfly), as well as a simple hard-wired programmer connected directly to a ppi(4) or parport(4) parallel port, or to a standard serial port. In the simplest case, the hardware consists just of a cable connecting the respective AVR signal lines to the parallel port.
The MCU is programmed in serial programming mode, so, for the ppi(4) based programmer, the MCU signals ‘/RESET’, ‘SCK’, ‘SDI’ and ‘SDO’ of the AVR's SPI interface need to be connected to the parallel port; older boards might use the labels MOSI for SDO or MISO for SDI. Optionally, some otherwise unused output pins of the parallel port can be used to supply power for the MCU part, so it is also possible to construct a passive stand-alone programming device. Some status LEDs indicating the current operating state of the programmer can be connected, and a signal is available to control a buffer/driver IC 74LS367 (or 74HCT367). The latter can be useful to decouple the parallel port from the MCU when in-system programming is used.
A number of equally simple bit-bang programming adapters that connect to a serial port are supported as well, among them the popular Ponyprog serial adapter, and the DASA and DASA3 adapters that used to be supported by uisp(1). Note that these adapters are meant to be attached to a physical serial port. Connecting to a serial port emulated on top of USB is likely to not work at all, or to work abysmally slow.
If you happen to have a Linux system with at least 4 hardware GPIOs available (like almost all embedded Linux boards) you can do without any additional hardware - just connect them to the SDO, SDI, RESET and SCK pins on the AVR and use the linuxgpio programmer type. It bitbangs the lines using the Linux sysfs GPIO interface. Of course, care should be taken about voltage level compatibility. Also, although not strictly required, it is strongly advisable to protect the GPIO pins from overcurrent situations in some way. The simplest would be to just put some resistors in series or better yet use a 3-state buffer driver like the 74HC244. Have a look at http://kolev.info/blog/2013/01/06/avrdude-linuxgpio/ for a more detailed tutorial about using this programmer type.
Under a Linux installation with direct access to the SPI bus and GPIO pins, such as would be found on a Raspberry Pi, the ``linuxspi'' programmer type can be used to directly connect to and program a chip using the built in interfaces on the computer. The requirements to use this type are that an SPI interface is exposed along with one GPIO pin. The GPIO serves as the reset output since the Linux SPI drivers do not hold chip select down when a transfer is not occurring and thus it cannot be used as the reset pin. A readily available level translator should be used between the SPI bus/reset GPIO and the chip to avoid potentially damaging the computer's SPI controller in the event that the chip is running at 5V and the SPI runs at 3.3V. The GPIO chosen for reset can be configured in the avrdude configuration file using the reset entry under the linuxspi programmer, or directly in the port specification. An external pull-up resistor should be connected between the AVR's reset pin and Vcc. If Vcc is not the same as the SPI voltage, this should be done on the AVR side of the level translator to protect the hardware from damage.
The -P portname option for this programmer defaults to /dev/spidev0.0:/dev/gpiochip0.
Atmel's STK500 programmer is also supported and connects to a serial port. Both, firmware versions 1.x and 2.x can be handled, but require a different programmer type specification (by now). Using firmware version 2, high-voltage programming is also supported, both parallel and serial (programmer types stk500pp and stk500hvsp).
Wiring boards (e.g. Arduino Mega 2560 Rev3) are supported, utilizing STK500 V2.x protocol, but a simple DTR/RTS toggle is used to set the boards into programming mode. The programmer type is ``wiring''. Note that the -D option will likely be required in this case, because the bootloader will rewrite the program memory, but no true chip erase can be performed.
Serial bootloaders that run a skeleton of the STK500 1.x protocol are supported via their own programmer type ``arduino''. This programmer works for the Arduino Uno Rev3 or any AVR that runs the Optiboot bootloader.
Urprotocol is a leaner version of the STK500 1.x protocol that is designed to be backwards compatible with STK500 v1.x, and allows bootloaders to be much smaller, e.g., as implemented in the urboot project https://github.com/stefanrueger/urboot. The programmer type ``urclock'' caters for these urboot programmers. Owing to its backward compatibility, bootloaders that can be served by the arduino programmer can normally also be served by the urclock programmer. This may require specifying the size of (to avrdude) unknown bootloaders in bytes using the -x bootsize=<n> option, which is necessary for the urclock programmer to enable it to protect the bootloader from being overwritten. If an unknown bootloader has EEPROM read/write capability then the option -x eepromrw informs avrdude -c urclock of that capability.
The BusPirate is a versatile tool that can also be used as an AVR programmer. A single BusPirate can be connected to up to 3 independent AVRs. See the section on extended parameters below for details.
Atmel's STK600 programmer is supported in ISP and high-voltage programming modes, and connects through the USB. For ATxmega devices, the STK600 is supported in PDI mode. For ATtiny4/5/9/10 devices, the STK600 and AVRISP mkII are supported in TPI mode.
The simple serial programmer described in Atmel's application note AVR910, and the bootloader described in Atmel's application note AVR109 (which is also used by the AVR Butterfly evaluation board), are supported on a serial port.
Atmel's JTAG ICE (mkI, mkII, and 3) is supported as well to up- or download memory areas from/to an AVR target (no support for on-chip debugging). For the JTAG ICE mkII, JTAG, debugWire and ISP mode are supported, provided it has a firmware revision of at least 4.14 (decimal). JTAGICE3 also supports all of JTAG, debugWIRE, and ISP mode. See below for the limitations of debugWire. For ATxmega devices, the JTAG ICE mkII is supported in PDI mode, provided it has a revision 1 hardware and firmware version of at least 5.37 (decimal). For ATxmega devices, the JTAGICE3 is supported in PDI mode.
Atmel-ICE (ARM/AVR) is supported in all modes (JTAG, PDI for Xmega, debugWIRE, ISP, UPDI).
Atmel's XplainedPro boards, using the EDBG protocol (CMSIS-DAP compatible), are supported using the "jtag3" programmer type.
Atmel's XplainedMini boards, using the mEDBG protocol, are also supported using the "jtag3" programmer type.
The AVR Dragon is supported in all modes (ISP, JTAG, HVSP, PP, debugWire). When used in JTAG and debugWire mode, the AVR Dragon behaves similar to a JTAG ICE mkII, so all device-specific comments for that device will apply as well. When used in ISP mode, the AVR Dragon behaves similar to an AVRISP mkII (or JTAG ICE mkII in ISP mode), so all device-specific comments will apply there. In particular, the Dragon starts out with a rather fast ISP clock frequency, so the -B bitclock option might be required to achieve a stable ISP communication. For ATxmega devices, the AVR Dragon is supported in PDI mode, provided it has a firmware version of at least 6.11 (decimal).
The avrftdi, USBasp ISP and USBtinyISP adapters are also supported, provided avrdude has been compiled with libusb support. USBasp ISP and USBtinyISP both feature simple firmware-only USB implementations, running on an ATmega8 (or ATmega88), or ATtiny2313, respectively. If libftdi has has been compiled in avrdude, the avrftdi device adds support for many programmers using FTDI's 2232C/D/H and 4232H parts running in MPSSE mode, which hard-codes (in the chip) SCK to bit 1, SDO to bit 2, and SDI to bit 3. Reset is usually bit 4.
The Atmel DFU bootloader is supported in both, FLIP protocol version 1 (AT90USB* and ATmega*U* devices), as well as version 2 (Xmega devices). See below for some hints about FLIP version 1 protocol behaviour.
The MPLAB(R) PICkit 4 and MPLAB(R) SNAP, are supported in JTAG, TPI, ISP, PDI and UPDI mode. The Curiosity Nano board is supported in UPDI mode. It is dubbed “PICkit on Board”, thus the name pkobn_updi.
SerialUPDI programmer implementation is based on Microchip's pymcuprog https://github.com/microchip-pic-avr-tools/pymcuprog utility, but it also contains some performance improvements included in Spence Konde's DxCore Arduino core https://github.com/SpenceKonde/DxCore. In a nutshell, this programmer consists of simple USB->UART adapter, diode and couple of resistors. It uses serial connection to provide UPDI interface. See the texinfo documentation for more details and known issues.
The jtag2updi programmer is supported, and can program AVRs with a UPDI interface. Jtag2updi is just a firmware that can be uploaded to an AVR, which enables it to interface with avrdude using the jtagice mkii protocol via a serial link. https://github.com/ElTangas/jtag2updi
The Micronucleus bootloader is supported for both protocol version V1 and V2. As the bootloader does not support reading from flash memory, use the -V option to prevent AVRDUDE from verifying the flash memory. See the section on extended parameters for Micronucleus specific options.
The Teensy bootloader is supported for all AVR boards. As the bootloader does not support reading from flash memory, use the -V option to prevent AVRDUDE from verifying the flash memory. See the section on extended parameters for Teensy specific options.
Input files can be provided, and output files can be written in different file formats, such as raw binary files containing the data to download to the chip, Intel hex format, or Motorola S-record format. There are a number of tools available to produce those files, like asl(1) as a standalone assembler, or avr-objcopy(1) for the final stage of the GNU toolchain for the AVR microcontroller.
Provided libelf(3) was present when compiling avrdude, the input file can also be the final ELF file as produced by the linker. The appropriate ELF section(s) will be examined, according to the memory area to write to.
Avrdude can program the EEPROM and flash ROM memory cells of supported AVR parts. Where supported by the serial instruction set, fuse bits and lock bits can be programmed as well. These are implemented within avrdude as separate memory types and can be programmed using data from a file (see the -U option) or from terminal mode (see the dump and write commands). It is also possible to read the chip (provided it has not been code-protected previously, of course) and store the data in a file. Finally, a ``terminal'' mode is available that allows one to interactively communicate with the MCU, and to display or program individual memory cells. On the STK500 and STK600 programmer, several operational parameters (target supply voltage, target Aref voltage, programming clock) can be examined and changed from within terminal mode as well.

Options

In order to control all the different operation modi, a number of options need to be specified to avrdude.
-p partno
This option specifies the MCU connected to the programmer. The MCU descriptions are read from the config file. For currently supported MCUs use ? as partno, which will print a list of partno ids and official part names. Both can be used with the -p option. If -p ? is specified with a specific programmer, see -c below, then only those parts are output that the programmer expects to be able to handle, together with the programming interface(s) that can be used in that combination. In reality there can be deviations from this list, particularly if programming is directly via a bootloader.
Following parts need special attention:
AT90S1200
The ISP programming protocol of the AT90S1200 differs in subtle ways from that of other AVRs. Thus, not all programmers support this device. Known to work are all direct bitbang programmers, and all programmers talking the STK500v2 protocol.
AT90S2343
The AT90S2323 and ATtiny22 use the same algorithm.
ATmega2560, ATmega2561
Flash addressing above 128 KB is not supported by all programming hardware. Known to work are jtag2, stk500v2, and bit-bang programmers.
ATtiny11
The ATtiny11 can only be programmed in high-voltage serial mode.
-p wildcard/flags
Run developer options for MCUs that are matched by wildcard. Whilst their main use is for developers some flags can be of utility for users, e.g., avrdude -p m328p/S outputs AVRDUDE's understanding of ATmega328P MCU properties; for more information run avrdude -p x/h.
-b baudrate
Override the RS-232 connection baud rate specified in the respective programmer's entry of the configuration file.
-B bitclock
Specify the bit clock period for the JTAG, PDI, TPI, UPDI, or ISP interface. The value is a floating-point number in microseconds. Alternatively, the value might be suffixed with "Hz", "kHz" or "MHz" in order to specify the bit clock frequency rather than a period. Some programmers default their bit clock value to a 1 microsecond bit clock period, suitable for target MCUs running at 4 MHz clock and above. Slower MCUs need a correspondingly higher bit clock period. Some programmers reset their bit clock value to the default value when the programming software signs off, whilst others store the last used bit clock value. It is recommended to always specify the bit clock if read/write speed is important. You can use the 'default_bitclock' keyword in your ${HOME}/.config/avrdude/avrdude.rc or ${HOME}/.avrduderc file to assign a default value to keep from having to specify this option on every invocation.
-c programmer-id
Use the programmer specified by the argument. Programmers and their pin configurations are read from the config file (see the -C option). New pin configurations can be easily added or modified through the use of a config file to make avrdude work with different programmers as long as the programmer supports the Atmel AVR serial program method. You can use the 'default_programmer' keyword in your ${HOME}/.config/avrdude/avrdude.rc or ${HOME}/.avrduderc file to assign a default programmer to keep from having to specify this option on every invocation. A full list of all supported programmers is output to the terminal by using ? as programmer-id. If -c ? is specified with a specific part, see -p above, then only those programmers are output that expect to be able to handle this part, together with the programming interface(s) that can be used in that combination. In reality there can be deviations from this list, particularly if programming is directly via a bootloader.
-c wildcard/flags
Run developer options for programmers that are matched by wildcard. Whilst their main use is for developers some flags can be of utility for users, e.g., avrdude -c usbtiny/S shows AVRDUDE's understanding of usbtiny's properties; for more information run avrdude -c x/h.
-C config-file
Use the specified config file to load configuration data. This file contains all programmer and part definitions that avrdude knows about. See the config file, located at /etc/avrdude.conf, which contains a description of the format.
If config-file is written as +filename then this file is read after the system wide and user configuration files. This can be used to add entries to the configuration without patching your system wide configuration file. It can be used several times, the files are read in same order as given on the command line.
-A
Disable the automatic removal of trailing-0xFF sequences in file input that is to be programmed to flash and in AVR reads from flash memory. Normally, trailing 0xFFs can be discarded, as flash programming requires the memory be erased to 0xFF beforehand. -A should be used when the programmer hardware, or bootloader software for that matter, does not carry out chip erase and instead handles the memory erase on a page level. Popular Arduino bootloaders exhibit this behaviour; for this reason -A is engaged by default when specifying -c arduino.
-D
Disable auto erase for flash. When the -U option with flash memory is specified, avrdude will perform a chip erase before starting any of the programming operations, since it generally is a mistake to program the flash without performing an erase first. This option disables that. Auto erase is not used for ATxmega devices as these devices can use page erase before writing each page so no explicit chip erase is required. Note however that any page not affected by the current operation will retain its previous contents. Setting -D implies -A.
-e
Causes a chip erase to be executed. This will reset the contents of the flash ROM and EEPROM to the value ‘0xff’, and clear all lock bits. Except for ATxmega devices which can use page erase, it is basically a prerequisite command before the flash ROM can be reprogrammed again. The only exception would be if the new contents would exclusively cause bits to be programmed from the value ‘1’ to ‘0’. Note that in order to reprogram EEPROM cells, no explicit prior chip erase is required since the MCU provides an auto-erase cycle in that case before programming the cell.
-E exitspec[,exitspec]
By default, avrdude leaves the parallel port in the same state at exit as it has been found at startup. This option modifies the state of the ‘/RESET’ and ‘Vcc’ lines the parallel port is left at, according to the exitspec arguments provided, as follows:
reset
The ‘/RESET’ signal will be left activated at program exit, that is it will be held low, in order to keep the MCU in reset state afterwards. Note in particular that the programming algorithm for the AT90S1200 device mandates that the ‘/RESET’ signal is active before powering up the MCU, so in case an external power supply is used for this MCU type, a previous invocation of avrdude with this option specified is one of the possible ways to guarantee this condition. reset is supported by the linuxspi and flip2 programmer options, as well as all parallel port based programmers.
noreset
The ‘/RESET’ line will be deactivated at program exit, thus allowing the MCU target program to run while the programming hardware remains connected. noreset is supported by the linuxspi and flip2 programmer options, as well as all parallel port based programmers.
vcc
This option will leave those parallel port pins active (i. e. high) that can be used to supply ‘Vcc’ power to the MCU.
novcc
This option will pull the ‘Vcc’ pins of the parallel port down at program exit.
d_high
This option will leave the 8 data pins on the parallel port active. (i. e. high)
d_low
This option will leave the 8 data pins on the parallel port inactive. (i. e. low)
Multiple exitspec arguments can be separated with commas.
-F
Normally, avrdude tries to verify that the device signature read from the part is reasonable before continuing. Since it can happen from time to time that a device has a broken (erased or overwritten) device signature but is otherwise operating normally, this options is provided to override the check. Also, for programmers like the Atmel STK500 and STK600 which can adjust parameters local to the programming tool (independent of an actual connection to a target controller), this option can be used together with -t to continue in terminal mode. Moreover, the option allows to continue despite failed initialization of connection between a programmer and a target.
-i delay
For bitbang-type programmers, delay for approximately delay microseconds between each bit state change. If the host system is very fast, or the target runs off a slow clock (like a 32 kHz crystal, or the 128 kHz internal RC oscillator), this can become necessary to satisfy the requirement that the ISP clock frequency must not be higher than 1/4 of the CPU clock frequency. This is implemented as a spin-loop delay to allow even for very short delays. On Unix-style operating systems, the spin loop is initially calibrated against a system timer, so the number of microseconds might be rather realistic, assuming a constant system load while avrdude is running. On Win32 operating systems, a preconfigured number of cycles per microsecond is assumed that might be off a bit for very fast or very slow machines.
-l logfile
Use logfile rather than stderr for diagnostics output. Note that initial diagnostic messages (during option parsing) are still written to stderr anyway.
-n
No-write - disables actually writing data to the MCU (useful for debugging avrdude ).
-O
Perform a RC oscillator run-time calibration according to Atmel application note AVR053. This is only supported on the STK500v2, AVRISP mkII, and JTAG ICE mkII hardware. Note that the result will be stored in the EEPROM cell at address 0.
-P port
Use port to identify the device to which the programmer is attached. By default the /dev/ppi0 port is used, but if the programmer type normally connects to the serial port, the /dev/cuaa0 port is the default. If you need to use a different parallel or serial port, use this option to specify the alternate port name.
On Win32 operating systems, the parallel ports are referred to as lpt1 through lpt3, referring to the addresses 0x378, 0x278, and 0x3BC, respectively. If the parallel port can be accessed through a different address, this address can be specified directly, using the common C language notation (i. e., hexadecimal values are prefixed by ‘0x’ ).
For the JTAG ICE mkII and JTAGICE3, if avrdude has been configured with libusb support, port can alternatively be specified as usb[:serialno]. This will cause avrdude to search the programmer on USB. If serialno is also specified, it will be matched against the serial number read from any JTAG ICE mkII found on USB. The match is done after stripping any existing colons from the given serial number, and right-to-left, so only the least significant bytes from the serial number need to be given.
As the AVRISP mkII device can only be talked to over USB, the very same method of specifying the port is required there.
For the USB programmer "AVR-Doper" running in HID mode, the port must be specified as avrdoper. Libhidapi support is required on Unix and Mac OS but not on Windows. For more information about AVR-Doper see http://www.obdev.at/avrusb/avrdoper.html.
For the USBtinyISP, which is a simplistic device not implementing serial numbers, multiple devices can be distinguished by their location in the USB hierarchy. See the respective Troubleshooting entry in the detailed documentation for examples.
For the XBee programmer the target MCU is to be programmed wirelessly over a ZigBee mesh using the XBeeBoot bootloader. The ZigBee 64-bit address for the target MCU's own XBee device must be supplied as a 16-character hexadecimal value as a port prefix, followed by the ‘@’ character, and the serial device to connect to a second directly contactable XBee device associated with the same mesh (with a default baud rate of 9600). This may look similar to: 0013a20000000001@/dev/tty.serial.
For diagnostic purposes, if the target MCU with an XBeeBoot bootloader is connected directly to the serial port, the 64-bit address field can be omitted. In this mode the default baud rate will be 19200.
For programmers that attach to a serial port using some kind of higher level protocol (as opposed to bit-bang style programmers), port can be specified as net:host:port. In this case, instead of trying to open a local device, a TCP network connection to (TCP) port on host is established. Square brackets may be placed around host to improve readability, for numeric IPv6 addresses (e.g. net:[2001:db8::42]:1337). The remote endpoint is assumed to be a terminal or console server that connects the network stream to a local serial port where the actual programmer has been attached to. The port is assumed to be properly configured, for example using a transparent 8-bit data connection without parity at 115200 Baud for a STK500.
Note: The ability to handle IPv6 hostnames and addresses is limited to Posix systems (by now).
-q
Disable (or quell) output of the progress bar while reading or writing to the device. Specify it more often for even quieter operations.
-s, -u
These options used to control the obsolete "safemode" feature which is no longer present. They are silently ignored for backwards compatibility.
-t
Tells avrdude to enter the interactive ``terminal'' mode instead of up- or downloading files. See below for a detailed description of the terminal mode.
-U memtype:op:filename[:format]
Perform a memory operation as indicated. The memtype field specifies the memory type to operate on. The available memory types are device-dependent, the actual configuration can be viewed with the part command in terminal mode. Typically, a device's memory configuration at least contains the memory types flash and eeprom. All memory types currently known are:
calibration
One or more bytes of RC oscillator calibration data.
eeprom
The EEPROM of the device.
efuse
The extended fuse byte.
flash
The flash ROM of the device.
fuse
The fuse byte in devices that have only a single fuse byte.
hfuse
The high fuse byte.
lfuse
The low fuse byte.
lock
The lock byte.
signature
The three device signature bytes (device ID).
fuseN
The fuse bytes of ATxmega devices, N is an integer number for each fuse supported by the device.
application
The application flash area of ATxmega devices.
apptable
The application table flash area of ATxmega devices.
boot
The boot flash area of ATxmega devices.
prodsig
The production signature (calibration) area of ATxmega devices.
usersig
The user signature area of ATxmega devices.
The op field specifies what operation to perform:
r
read device memory and write to the specified file
w
read data from the specified file and write to the device memory
v
read data from both the device and the specified file and perform a verify
The filename field indicates the name of the file to read or write. The format field is optional and contains the format of the file to read or write. Format can be one of:
i
Intel Hex
I
Intel Hex with comments on download and tolerance of checksum errors on upload
s
Motorola S-record
r
raw binary; little-endian byte order, in the case of the flash ROM data
e
ELF (Executable and Linkable Format)
m
immediate; actual byte values specified on the command line, separated by commas or spaces. This is good for programming fuse bytes without having to create a single-byte file or enter terminal mode.
a
auto detect; valid for input only, and only if the input is not provided at stdin.
d
decimal; this and the following formats are only valid on output. They generate one line of output for the respective memory section, forming a comma-separated list of the values. This can be particularly useful for subsequent processing, like for fuse bit settings.
h
hexadecimal; each value will get the string 0x prepended. Only valid on output.
o
octal; each value will get a 0 prepended unless it is less than 8 in which case it gets no prefix. Only valid on output.
b
binary; each value will get the string 0b prepended. Only valid on output.
The default is to use auto detection for input files, and raw binary format for output files. Note that if filename contains a colon, the format field is no longer optional since the filename part following the colon would otherwise be misinterpreted as format.
When reading any kind of flash memory area (including the various sub-areas in Xmega devices), the resulting output file will be truncated to not contain trailing 0xFF bytes which indicate unprogrammed (erased) memory. Thus, if the entire memory is unprogrammed, this will result in an output file that has no contents at all.
As an abbreviation, the form -U filename is equivalent to specifying -U flash:w:filename:a. This will only work if filename does not have a colon in it.
-v
Enable verbose output. More -v options increase verbosity level.
-V
Disable automatic verify check when uploading data.
-x extended_param
Pass extended_param to the chosen programmer implementation as an extended parameter. The interpretation of the extended parameter depends on the programmer itself. See below for a list of programmers accepting extended parameters.

Terminal mode

In this mode, avrdude only initializes communication with the MCU, and then awaits user commands on standard input. Commands and parameters may be abbreviated to the shortest unambiguous form. Terminal mode provides a command history using readline(3), so previously entered command lines can be recalled and edited. The following commands are currently implemented for all programmers:
dump memory addr len
Read len bytes from the specified memory area, and display them in the usual hexadecimal and ASCII form.
dump memory addr ...
Read all bytes from the specified memory starting at address addr, and display them.
dump memory addr
Read 256 bytes from the specified memory area, and display them.
dump memory ...
Read all bytes from the specified memory, and display them.
dump memory
Continue dumping the memory contents for another 256 bytes where the previous dump command left off.
read
can be used as an alias for dump
write memory addr data[,] {data[,]}
Manually program the respective memory cells, starting at address addr, using the data items provided. The terminal implements reading from and writing to flash and EEPROM type memories normally through a cache and paged access functions. All other memories are directly written to without use of a cache. Some older parts without paged access will also have flash and EEPROM directly accessed without cache.
data can be hexadecimal, octal or decimal integers, floating point numbers or C-style strings and characters. For integers, an optional case-insensitive suffix specifies the data size: HH 8 bit, H/S 16 bit, L 32 bit, LL 64 bit. Suffix D indicates a 64-bit double, F a 32-bit float, whilst a floating point number without suffix defaults to 32-bit float. Hexadecimal floating point notation is supported. An ambiguous trailing suffix, e.g., 0x1.8D, is read as no-suffix float where D is part of the mantissa; use a zero exponent 0x1.8p0D to clarify.
An optional U suffix makes integers unsigned. Ordinary 0x hex integers are always treated as unsigned. +0x or -0x hex numbers are treated as signed unless they have a U suffix. Unsigned integers cannot be larger than 2^64-1. If n is an unsigned integer then -n is also a valid unsigned integer as in C. Signed integers must fall into the [-2^63, 2^63-1] range or a correspondingly smaller range when a suffix specifies a smaller type.
Ordinary 0x hex integers with n hex digits (counting leading zeros) use the smallest size of one, two, four and eight bytes that can accommodate any n-digit hex integer. If an integer suffix specifies a size explicitly the corresponding number of least significant bytes are written, and a warning shown if the number does not fit into the desired representation. Otherwise, unsigned integers occupy the smallest of one, two, four or eight bytes needed. Signed numbers are allowed to fit into the smallest signed or smallest unsigned representation: For example, 255 is stored as one byte as 255U would fit in one byte, though as a signed number it would not fit into a one-byte interval [-128, 127]. The number -1 is stored in one byte whilst -1U needs eight bytes as it is the same as 0xFFFFffffFFFFffffU.
One trailing comma at the end of data items is ignored to facilitate copy & paste of lists.
write memory addr len data[,] {data[,]} ...
The ellipsis ... form writes <len> bytes padded by repeating the last data item.
flush
Synchronise with the device all pending cached writes to EEPROM or flash. With some programmer and part combinations, flash (and sometimes EEPROM, too) looks like a NOR memory, ie, one can only write 0 bits, not 1 bits. When this is detected, either page erase is deployed (e.g., with parts that have PDI/UPDI interfaces), or if that is not available, both EEPROM and flash caches are fully read in, a chip erase command is issued and both EEPROM and flash are written back to the device. Hence, it can take minutes to ensure that a single previously cleared bit is set and, therefore, this command should be used sparingly.
abort
Normally, caches are only ever actually written to the device when using the flush command, at the end of the terminal session after typing quit, or after EOF on input is encountered. The abort command resets the cache discarding all previous writes to the flash and EEPROM cache.
erase
Perform a chip erase and discard all pending writes to EEPROM and flash.
sig
Display the device signature bytes.
part
Display the current part settings and parameters. Includes chip specific information including all memory types supported by the device, read/write timing, etc.
verbose [level]
Change (when level is provided), or display the verbosity level. The initial verbosity level is controlled by the number of -v options given on the commandline.
quell [level]
Change (when level is provided), or display the quell level. 1 is used to suppress progress reports. 2 or higher yields in progressively quieter operations. The initial quell level is controlled by the number of -q options given on the commandline.
?
 
help
Give a short on-line summary of the available commands.
quit
Leave terminal mode and thus avrdude.
The terminal commands below may only be implemented on some specific programmers, and may therefore not be available in the help menu.
pgerase memory addr
Erase one page of the memory specified.
send b1 b2 b3 b4
Send raw instruction codes to the AVR device. If you need access to a feature of an AVR part that is not directly supported by avrdude, this command allows you to use it, even though avrdude does not implement the command. When using direct SPI mode, up to 3 bytes can be omitted.
spi
Enter direct SPI mode. The pgmled pin acts as chip select. Supported on parallel bitbang programmers, and partially by USBtiny.
pgm
Return to programming mode (from direct SPI mode).
vtarg voltage
Set the target's supply voltage to voltage Volts. Supported on the STK500 and STK600 programmer.
varef [channel] voltage
Set the adjustable voltage source to voltage Volts. This voltage is normally used to drive the target's Aref input on the STK500. On the Atmel STK600, two reference voltages are available, which can be selected by the optional channel argument (either 0 or 1). Supported on the STK500 and STK600 programmer.
fosc freq[M|k]
Set the programming oscillator to freq Hz. An optional trailing letter M multiplies by 1E6, a trailing letter k by 1E3. Supported on the STK500 and STK600 programmer.
fosc off
Turn the programming oscillator off. Supported on the STK500 and STK600 programmer.
sck period
STK500 and STK600 programmer: Set the SCK clock period to period microseconds. JTAG ICE: Set the JTAG ICE bit clock period to period microseconds. Note that unlike STK500 settings, this setting will be reverted to its default value (approximately 1 microsecond) when the programming software signs off from the JTAG ICE. This parameter can also be used on the JTAG ICE mkII, JTAGICE3, and Atmel-ICE to specify the ISP clock period when operating the ICE in ISP mode.
parms
STK500 and STK600 programmer: Display the current voltage and programming oscillator parameters. JTAG ICE: Display the current target supply voltage and JTAG bit clock rate/period. Other programmers: Display the programmer specific parameters.

Default Parallel port pin connections

(these can be changed, see the -c option)
Pin number Function
2-5 Vcc (optional power supply to MCU)
7 /RESET (to MCU)
8 SCK (to MCU)
9 SDO (to MCU)
10 SDI (from MCU)
18-25 GND

debugWire limitations

The debugWire protocol is Atmel's proprietary one-wire (plus ground) protocol to allow an in-circuit emulation of the smaller AVR devices, using the ‘/RESET’ line. DebugWire mode is initiated by activating the ‘DWEN’ fuse, and then power-cycling the target. While this mode is mainly intended for debugging/emulation, it also offers limited programming capabilities. Effectively, the only memory areas that can be read or programmed in this mode are flash ROM and EEPROM. It is also possible to read out the signature. All other memory areas cannot be accessed. There is no chip erase functionality in debugWire mode; instead, while reprogramming the flash ROM, each flash ROM page is erased right before updating it. This is done transparently by the JTAG ICE mkII (or AVR Dragon). The only way back from debugWire mode is to initiate a special sequence of commands to the JTAG ICE mkII (or AVR Dragon), so the debugWire mode will be temporarily disabled, and the target can be accessed using normal ISP programming. This sequence is automatically initiated by using the JTAG ICE mkII or AVR Dragon in ISP mode, when they detect that ISP mode cannot be entered.

FLIP version 1 idiosyncrasies

Bootloaders using the FLIP protocol version 1 experience some very specific behaviour.
These bootloaders have no option to access memory areas other than Flash and EEPROM.
When the bootloader is started, it enters a security mode where the only acceptable access is to query the device configuration parameters (which are used for the signature on AVR devices). The only way to leave this mode is a chip erase. As a chip erase is normally implied by the -U option when reprogramming the flash, this peculiarity might not be very obvious immediately.
Sometimes, a bootloader with security mode already disabled seems to no longer respond with sensible configuration data, but only 0xFF for all queries. As these queries are used to obtain the equivalent of a signature, avrdude can only continue in that situation by forcing the signature check to be overridden with the -F option.
A chip erase might leave the EEPROM unerased, at least on some versions of the bootloader.

Programmers accepting extended parameters

JTAG ICE mkII
 
JTAGICE3
 
Atmel-ICE
 
Power Debugger
 
PICkit 4
 
MPLAB SNAP
 
AVR Dragon
When using the JTAG ICE mkII, JTAGICE3, Atmel-ICE, PICkit 4, MPLAB SNAP, Power Debugger or AVR Dragon in JTAG mode, the following extended parameter is accepted:
The PICkit 4 and the Power Debugger also supports high-voltage UPDI programming. This is used to enable a UPDI pin that has previously been set to RESET or GPIO mode. High-voltage UPDI can be utilized by using an extended parameter:
AVR910
Arduino
Urclock
buspirate
Micronucleus bootloader
Teensy bootloader
Wiring
When using the Wiring programmer type, the following optional extended parameter is accepted:
PICkit2
Connection to the PICkit2 programmer:
Extended commandline parameters:
USBasp
Extended parameters:
xbee
Extended parameters:
STK500
serialupdi
Extended parameters:
linuxspi
Extended parameter:

FILES

/dev/ppi0
Default device to be used for communication with the programming hardware
avrdude.conf
Programmer and parts configuration file
On Windows systems, this file is looked up in the same directory as the executable file. On all other systems, the file is first looked up in ../etc/, relative to the path of the executable, then in the same directory as the executable itself, and finally in the system default location /etc/avrdude.conf.
${XDG_CONFIG_HOME}/avrdude/avrdude.rc
Local programmer and parts configuration file (per-user overrides); it follows the same syntax as avrdude.conf; if the ${XDG_CONFIG_HOME} environment variable is not set or empty, the directory ${HOME}/.config/ is used instead.
${HOME}/.avrduderc
Alternative location of the per-user configuration file if above file does not exist
~/.inputrc
Initialization file for the readline(3) library
/usr/share/doc/avrdude/avrdude.pdf.gz
User manual

DIAGNOSTICS

avrdude: jtagmkII_setparm(): bad response to set parameter command: RSP_FAILED 
avrdude: jtagmkII_getsync(): ISP activation failed, trying debugWire 
avrdude: Target prepared for ISP, signed off. 
avrdude: Please restart avrdude without power-cycling the target.
If the target AVR has been set up for debugWire mode (i. e. the DWEN fuse is programmed), normal ISP connection attempts will fail as the /RESET pin is not available. When using the JTAG ICE mkII in ISP mode, the message shown indicates that avrdude has guessed this condition, and tried to initiate a debugWire reset to the target. When successful, this will leave the target AVR in a state where it can respond to normal ISP communication again (until the next power cycle). Typically, the same command is going to be retried again immediately afterwards, and will then succeed connecting to the target using normal ISP communication.

SEE ALSO

avr-objcopy(1), ppi(4), libelf(3,) readline(3)
The AVR microcontroller product description can be found at
http://www.atmel.com/products/AVR/

AUTHORS

Avrdude was written by Brian S. Dean <[email protected]>.
This man page by Joerg Wunsch.

BUGS

Please report bugs via
https://github.com/avrdudes/avrdude/issues
The JTAG ICE programmers currently cannot write to the flash ROM one byte at a time. For that reason, updating the flash ROM from terminal mode does not work.
Page-mode programming the EEPROM through JTAG (i.e. through an -U option) requires a prior chip erase. This is an inherent feature of the way JTAG EEPROM programming works. This also applies to the STK500 and STK600 in parallel programming mode.
The USBasp and USBtinyISP drivers do not offer any option to distinguish multiple devices connected simultaneously, so effectively only a single device is supported.
Chip Select must be externally held low for direct SPI when using USBtinyISP, and send must be a multiple of four bytes.
The avrftdi driver allows one to select specific devices using any combination of vid,pid serial number (usbsn) vendor description (usbvendoror part description (usbproduct) as seen with lsusb or whatever tool used to view USB device information. Multiple devices can be on the bus at the same time. For the H parts, which have multiple MPSSE interfaces, the interface can also be selected. It defaults to interface 'A'.

Recommended readings

Pages related to avrdude you should read also: