create_bmp_for_rect_in_rect - bitmap generator for rectangular conductor
inside rectangular conductor (part of
atlc)
create_bmp_for_rect_in_rect [options... ] W H a b c d w h Er1 Er2
filename.bmp
This man page is not a complete set of documentation - the complexity of the
atlc project makes man pages not an ideal way to document it, although out of
completeness, man pages are produced. The best documentation that was current
at the time the version was produced should be found on your hard drive,
usually at
/usr/local/share/atlc/docs/html-docs/index.html
although it might be elsewhere if your system administrator chose to install the
package elsewhere. Sometimes, errors are corrected in the documentation and
placed at
http://atlc.sourceforge.net/ before a new release of atlc is
released. Please, if you notice a problem with the documentation - even
spelling errors and typos, please let me know.
create_bmp_for_rect_in_rect is a pre-processor for
atlc, the
finite difference program that is used to calculate the properties of a two
and three conductor electrical transmission line of arbitrary cross section.
The program
create_bmp_for_rect_in_rect is used as a fast way of
generating bitmaps (there is no need to use a graphics program), for a
rectangular conductor inside a rectangular conductor, with two dieletrics,
like this:
----------------------------------------------------- ^
| | |
| <--------------d-------------------> | |
| | |
| <----------w-----------> | |
| ------------------------ ^ | |
| | | | | |
| | Metallic conductor | | | H
|<----b-->| conductor (can be | c Er1 | |
| | off-centre) | | | |
| | | | | |
| ------------------------------------ ^ | |
| |..................................| | | |
| |...Dielectric, permittivity=Er2...| | | |
|<-a->|.....(can be off centre ).........| h | |
| |..................................| | | |
| |..................................| | | |
----------------------------------------------------- |
<---------------------------W----------------------->
The parameters 'W' and 'H' and the inner dimensions of the outer conductor. The
outer dimensions of the inner conductor are 'w' and 'c'. The inner conductor
is assumed to rest on a dielectric (Er2) which is 'd' wide and outer conductor
an the inner conductor is offset 'b' from the left hand sidewall of the outer
conductor. The whole region is surrounded by a dielectric of relative
permittivity 'Er1'. The dielectrics 'Er1' and then 'Er1' and 'Er2' will both
be 1.0
The bitmap is printed to the file specifiled as the last argument
create_bmp_for_rect_in_rect -f filename.bmp W H a b c d w h Er1 Er2
The bitmaps produced by
create_bmp_for_rect_in_rect are 24-bit bit colour
bitmaps, as are required by
atlc.
The permittivities of the bitmap, set by 'Er1' and 'Er2', determine the colours
in the bitmap. If Er1 or Er2 is 1.0, 1.0006, 2.1, 2.2, 2.33, 2.5, 3.3, 3.335,
3.7, 4.8, 10.2 or 100, then the colour corresponding to that permittivity will
be set according to the colours defined in COLOURS below. If Er1 is not one of
those permittivities, the region of permittivity Er1 will be set to the colour
0xCAFF00. If Er2 is not one of those values, then the region of the image will
be set to the colour 0xAC82AC. The program
atlc does not know what
these permittivites are, so they
atlc, must be told with the comand
line option -d, as in example 4 below.
-b bitmapsize
is used to set the size of the bitmap, and so the accuracy to which atlc is able
to calculate the transmission line's properties. The default value for
'bitmapsize' is normally 4, although this is set at compile time. The value
can be set anywhere from 1 to 15, but more than 8 is probably not sensible.
-f outfile
Set the output filename. By default, the bitmap is sent to stdout, but it *must*
be sent to a file, with this option, or as described above.
-v
Causes
create_bmp_for_rect_in_rect to print some data to stderr. Note,
nothing extra goes to standard output, as that is expected to be redirected to
a bitmap file.
The 24-bit bitmaps that
atlc expects, have 8 bits assigned to represent
the amount of red, 8 for blue and 8 for green. Hence there are 256 levels of
red, green and blue, making a total of 256*256*256=16777216 colours. Every one
of the possible 16777216 colours can be defined precisely by the stating the
exact amount of red, green and blue, as in:
red = 255,000,000 or 0xff0000
green = 000,255,000 or 0x00ff00
blue = 000,000,255 or 0x0000ff
black = 000,000,000 or 0x000000
white = 255,255,255 or 0xffffff
Brown = 255,000,255 or 0xff00ff
gray = 142,142,142 or 0x8e8e8e
Some colours, such as pink, turquoise, sandy, brown, gray etc may mean slightly
different things to different people. This is not so with
atlc, as the
program expects the colours below to be EXACTLY defined as given. Whether you
feel the colour is sandy or yellow is up to you, but if you use it in your
bitmap, then it either needs to be a colour recognised by atlc,
or you
must define it with a command line option (see OPTIONS and example 5 below).
red = 255,000,000 or 0xFF0000 is the live conductor.
green = 000,255,000 or 0x00FF00 is the grounded conductor.
blue = 000,000,000 or 0x0000FF is the negative conductor
All bitmaps
must have the live (red) and grounded (green) conductor. The
blue conductor is not currently supported, but it will be used to indicate a
negative conductor, which will be needed if/when the program gets extended to
analyse directional couplers.
The following dielectrics are recognised by atlc
and so are produced
by create_bmp_for_rect_cen_in_rect
.
white 255,255,255 or 0xFFFFFF as Er=1.0 (vacuum)
pink 255,202,202 or 0xFFCACA as Er=1.0006 (air)
L. blue 130,052,255 or 0x8235EF as Er=2.1 (PTFE)
Mid gray 142,242,142 or 0x8E8E8E as Er=2.2 (duroid 5880)
mauve 255.000,255 or 0xFF00FF as Er=2.33 (polyethylene)
yellow 255,255,000 or 0xFFFF00 as Er=2.5 (polystyrene)
sandy 239,203,027 or 0xEFCC1A as Er=3.3 (PVC)
brown 188,127,096 or 0xBC7F60 as Er=3.335 (epoxy resin)
Turquoise 026,239,179 or 0x1AEFB3 as Er=4.8 (glass PCB)
Dark gray 142,142,142 or 0x696969 as Er=6.15 (duroid 6006)
L. gray 240,240,240 or 0xDCDCDC as Er=10.2 (duroid 6010)
D. orange 213,160,067 or 0xD5A04D as Er=100.0 (mainly for test purposes)
Here are a few examples of the use of
create_bmp_for_rect_in_rect. Again,
see the html documentation in atlc-X.Y.Z/docs/html-docs/index.html for more
examples.
In the first example, there is just an air dielectric, so Er1=Er2=1.0. The inner
of 1x1 inches (or mm, miles etc) is placed centrally in an outer with
dimensions 3 x 3 inches.
The exact place where the dielectric starts (a) and its width (d) are
unimportant, but they must still be entered.
% create_bmp_for_rect_in_rect 3 3 1 1 1 1 1 1 > ex1.bmp
% atlc ex1.bmp
In this second example, an inner of 15.0 mm x 0.5 mm is surrounded by an outer
with internal dimensions of 61.5 x 20.1 mm. There is a material with
permittivity 2.1 (Er of PTFE) below the inner conductor. The output from
create_bmp_for_rect_in_rect is sent to a file ex1.bmp, which is then
processed by
atlc
% create_bmp_for_rect_in_rect 61.5 20.1 5 22 0.5 50 15 5 1.0 2.1 >
ex2.bmp
% atlc ex2.bmp
In example 3, the bitmap is made larger, to increase accuracy, but otherwise
this is identical to the second example.
% create_bmp_for_rect_in_rect -b7
61.5 20.1 5 22 0.5 50 15 5 1.0 2.1 > ex3.bmp
% atlc ex3.bmp
In the fourth example, materials with permittivites 2.78 and 7.89 are used.
While there is no change in how to use
create_bmp_for_rect_in_rect,
since these permittivities are not known, we must tell
atlc what they
are.
% create_bmp_for_rect_in_rect 61 20 1 4 22 0.5 50 15 5 2.78
7.89 > ex5.bmp % atlc -d CAFF00=2.78 -d AC82AC=7.89 ex5.bmp
In the sixth and final example, the -v option is used to print some
extra data to stderr from
create_bmp_for_rect_in_rect.
atlc(1) create_bmp_for_circ_in_circ(1) create_bmp_for_circ_in_rect(1)
create_bmp_for_microstrip_coupler(1) create_bmp_for_rect_cen_in_rect(1)
create_bmp_for_rect_cen_in_rect_coupler(1) create_bmp_for_rect_in_circ(1)
create_bmp_for_stripline_coupler(1) create_bmp_for_symmetrical_stripline(1)
design_coupler(1) find_optimal_dimensions_for_microstrip_coupler(1) readbin(1)
http://atlc.sourceforge.net - Home page
http://sourceforge.net/projects/atlc - Download area
atlc-X.Y.Z/docs/html-docs/index.html - HTML docs
atlc-X.Y.Z/docs/qex-december-1996/atlc.pdf - theory paper
atlc-X.Y.Z/examples - examples