NAME
PCRE - Perl-compatible regular expressions.SYNOPSIS
#include <pcreposix.h>int regcomp(regex_t *preg, const char *pattern, int cflags);int regexec(regex_t *preg, const char *string, size_t nmatch, regmatch_t pmatch[], int eflags); size_t regerror(int errcode, const regex_t *preg, char *errbuf, size_t errbuf_size);void regfree(regex_t *preg);
DESCRIPTION
This set of functions provides a POSIX-style API for the PCRE regular expression 8-bit library. See the pcreapi documentation for a description of PCRE's native API, which contains much additional functionality. There is no POSIX-style wrapper for PCRE's 16-bit and 32-bit library. The functions described here are just wrapper functions that ultimately call the PCRE native API. Their prototypes are defined in the pcreposix.h header file, and on Unix systems the library itself is called pcreposix.a, so can be accessed by adding -lpcreposix to the command for linking an application that uses them. Because the POSIX functions call the native ones, it is also necessary to add -lpcre. I have implemented only those POSIX option bits that can be reasonably mapped to PCRE native options. In addition, the option REG_EXTENDED is defined with the value zero. This has no effect, but since programs that are written to the POSIX interface often use it, this makes it easier to slot in PCRE as a replacement library. Other POSIX options are not even defined. There are also some other options that are not defined by POSIX. These have been added at the request of users who want to make use of certain PCRE-specific features via the POSIX calling interface. When PCRE is called via these functions, it is only the API that is POSIX-like in style. The syntax and semantics of the regular expressions themselves are still those of Perl, subject to the setting of various PCRE options, as described below. "POSIX-like in style" means that the API approximates to the POSIX definition; it is not fully POSIX-compatible, and in multi-byte encoding domains it is probably even less compatible. The header for these functions is supplied as pcreposix.h to avoid any potential clash with other POSIX libraries. It can, of course, be renamed or aliased as regex.h, which is the "correct" name. It provides two structure types, regex_t for compiled internal forms, and regmatch_t for returning captured substrings. It also defines some constants whose names start with "REG_"; these are used for setting options and identifying error codes.COMPILING A PATTERN
The function regcomp() is called to compile a pattern into an internal form. The pattern is a C string terminated by a binary zero, and is passed in the argument pattern. The preg argument is a pointer to a regex_t structure that is used as a base for storing information about the compiled regular expression. The argument cflags is either zero, or contains one or more of the bits defined by the following macros:REG_DOTALL
REG_ICASE
REG_NEWLINE
REG_NOSUB
REG_UCP
REG_UNGREEDY
REG_UTF8
MATCHING NEWLINE CHARACTERS
This area is not simple, because POSIX and Perl take different views of things. It is not possible to get PCRE to obey POSIX semantics, but then PCRE was never intended to be a POSIX engine. The following table lists the different possibilities for matching newline characters in PCRE:Default Change with
. matches newline no PCRE_DOTALL
newline matches [^a] yes not changeable
$ matches \n at end yes PCRE_DOLLARENDONLY
$ matches \n in middle no PCRE_MULTILINE
^ matches \n in middle no PCRE_MULTILINE
Default Change with
. matches newline yes REG_NEWLINE
newline matches [^a] yes REG_NEWLINE
$ matches \n at end no REG_NEWLINE
$ matches \n in middle no REG_NEWLINE
^ matches \n in middle no REG_NEWLINE
MATCHING A PATTERN
The function regexec() is called to match a compiled pattern preg against a given string, which is by default terminated by a zero byte (but see REG_STARTEND below), subject to the options in eflags. These can be:REG_NOTBOL
REG_NOTEMPTY
REG_NOTEOL
REG_STARTEND
ERROR MESSAGES
The regerror() function maps a non-zero errorcode from either regcomp() or regexec() to a printable message. If preg is not NULL, the error should have arisen from the use of that structure. A message terminated by a binary zero is placed in errbuf. The length of the message, including the zero, is limited to errbuf_size. The yield of the function is the size of buffer needed to hold the whole message.MEMORY USAGE
Compiling a regular expression causes memory to be allocated and associated with the preg structure. The function regfree() frees all such memory, after which preg may no longer be used as a compiled expression.AUTHOR
Philip Hazel University Computing Service Cambridge CB2 3QH, England.
REVISION
Last updated: 09 January 2012 Copyright (c) 1997-2012 University of Cambridge.
09 January 2012 | PCRE 8.30 |