NAME
pf — packet filterSYNOPSIS
device pfoptions PF_DEFAULT_TO_DROP
DESCRIPTION
Packet filtering takes place in the kernel. A pseudo-device, /dev/pf, allows userland processes to control the behavior of the packet filter through an ioctl(2) interface. There are commands to enable and disable the filter, load rulesets, add and remove individual rules or state table entries, and retrieve statistics. The most commonly used functions are covered by pfctl(8). Manipulations like loading a ruleset that involve more than a single ioctl(2) call require a so-called ticket, which prevents the occurrence of multiple concurrent manipulations. Fields of ioctl(2) parameter structures that refer to packet data (like addresses and ports) are generally expected in network byte-order. Rules and address tables are contained in so-called anchors. When servicing an ioctl(2) request, if the anchor field of the argument structure is empty, the kernel will use the default anchor (i.e., the main ruleset) in operations. Anchors are specified by name and may be nested, with components separated by ‘/’ characters, similar to how file system hierarchies are laid out. The final component of the anchor path is the anchor under which operations will be performed.SYSCTL VARIABLES AND LOADER TUNABLES
The following loader(8) tunables are available.- net.pf.states_hashsize
- Size of hash tables that store states. Should be power of 2. Default value is 131072.
- net.pf.source_nodes_hashsize
- Size of hash table that store source nodes. Should be power of 2. Default value is 32768.
KERNEL OPTIONS
The following options in the kernel configuration file are related to pf operation:PF_DEFAULT_TO_DROP
- Change default policy to drop by default
IOCTL INTERFACE
pf supports the following ioctl(2) commands, available through ⟨net/pfvar.h⟩:DIOCSTART
- Start the packet filter.
DIOCSTOP
- Stop the packet filter.
DIOCSTARTALTQ
- Start the ALTQ bandwidth control system (see altq(9)).
DIOCSTOPALTQ
- Stop the ALTQ bandwidth control system.
-
DIOCBEGINADDRS
struct pfioc_pooladdr *pp -
Clear the buffer address pool and get a
ticket for subsequent
DIOCADDADDR
,DIOCADDRULE
, andDIOCCHANGERULE
calls. -
DIOCADDADDR
struct pfioc_pooladdr *pp -
Add the pool address addr to the buffer
address pool to be used in the following
DIOCADDRULE
orDIOCCHANGERULE
call. All other members of the structure are ignored. -
DIOCADDRULE
struct pfioc_rule *pr -
Add rule at the end of the inactive
ruleset. This call requires a ticket
obtained through a preceding
DIOCXBEGIN
call and a pool_ticket obtained through aDIOCBEGINADDRS
call.DIOCADDADDR
must also be called if any pool addresses are required. The optional anchor name indicates the anchor in which to append the rule. nr and action are ignored. -
DIOCADDALTQ
struct pfioc_altq *pa - Add an ALTQ discipline or queue.
-
DIOCGETRULES
struct pfioc_rule *pr - Get a ticket for
subsequent
DIOCGETRULE
calls and the number nr of rules in the active ruleset. -
DIOCGETRULE
struct pfioc_rule *pr - Get a rule by its number
nr using the
ticket obtained through a preceding
DIOCGETRULES
call. If action is set toPF_GET_CLR_CNTR
, the per-rule statistics on the requested rule are cleared. -
DIOCGETADDRS
struct pfioc_pooladdr *pp - Get a ticket for
subsequent
DIOCGETADDR
calls and the number nr of pool addresses in the rule specified with r_action, r_num, and anchor. -
DIOCGETADDR
struct pfioc_pooladdr *pp - Get the pool address addr
by its number nr from the rule specified
with r_action,
r_num, and
anchor using the
ticket obtained through a preceding
DIOCGETADDRS
call. -
DIOCGETALTQS
struct pfioc_altq *pa - Get a ticket for
subsequent
DIOCGETALTQ
calls and the number nr of queues in the active list. -
DIOCGETALTQ
struct pfioc_altq *pa - Get the queueing discipline
altq by its number
nr using the
ticket obtained through a preceding
DIOCGETALTQS
call. -
DIOCGETQSTATS
struct pfioc_qstats *pq - Get the statistics on a queue. This call fills in a pointer to the buffer of statistics buf, of length nbytes, for the queue specified by nr.
-
DIOCGETRULESETS
struct pfioc_ruleset *pr -
Get the number nr of rulesets (i.e.,
anchors) directly attached to the anchor named by
path for use in subsequent
DIOCGETRULESET
calls. Nested anchors, since they are not directly attached to the given anchor, will not be included. This ioctl returnsEINVAL
if the given anchor does not exist. -
DIOCGETRULESET
struct pfioc_ruleset *pr - Get a ruleset (i.e., an anchor)
name by its number
nr from the given anchor
path, the maximum number of which can be
obtained from a preceding
DIOCGETRULESETS
call. This ioctl returnsEINVAL
if the given anchor does not exist orEBUSY
if another process is concurrently updating a ruleset. -
DIOCADDSTATE
struct pfioc_state *ps - Add a state entry.
-
DIOCGETSTATE
struct pfioc_state *ps - Extract the entry identified by the id and creatorid fields of the state structure from the state table.
-
DIOCKILLSTATES
struct pfioc_state_kill *psk - Remove matching entries from the state table. This ioctl returns the number of killed states in psk_killed.
-
DIOCCLRSTATES
struct pfioc_state_kill *psk - Clear all states. It works like
DIOCKILLSTATES
, but ignores the psk_af, psk_proto, psk_src, and psk_dst fields of the pfioc_state_kill structure. -
DIOCSETSTATUSIF
struct pfioc_if *pi - Specify the interface for which statistics are accumulated.
-
DIOCGETSTATUS
struct pf_status *s - Get the internal packet filter statistics.
DIOCCLRSTATUS
- Clear the internal packet filter statistics.
-
DIOCNATLOOK
struct pfioc_natlook *pnl - Look up a state table entry by source and destination addresses and ports.
-
DIOCSETDEBUG
u_int32_t *level - Set the debug level.
-
DIOCGETSTATES
struct pfioc_states *ps - Get state table entries.
If ps_len is non-zero on entry, as many
states as possible that can fit into this size will be copied into the
supplied buffer ps_states. On exit,
ps_len is always set to the total size
required to hold all state table entries (i.e., it is set to
sizeof(struct pf_state) * nr
). -
DIOCCHANGERULE
struct pfioc_rule *pcr - Add or remove the rule in
the ruleset specified by rule.action.
The type of operation to be performed is indicated by
action, which can be any of the
following:
ticket must be set to the value obtained
with
PF_CHANGE_GET_TICKET
for all actions exceptPF_CHANGE_GET_TICKET
. pool_ticket must be set to the value obtained with theDIOCBEGINADDRS
call for all actions exceptPF_CHANGE_REMOVE
andPF_CHANGE_GET_TICKET
. anchor indicates to which anchor the operation applies. nr indicates the rule number against whichPF_CHANGE_ADD_BEFORE
,PF_CHANGE_ADD_AFTER
, orPF_CHANGE_REMOVE
actions are applied. -
DIOCCHANGEADDR
struct pfioc_pooladdr *pca - Add or remove the pool address addr from the rule specified by r_action, r_num, and anchor.
-
DIOCSETTIMEOUT
struct pfioc_tm *pt -
Set the state timeout of timeout to
seconds. The old value will be placed
into seconds. For possible values of
timeout, consult the
PFTM_*
values in ⟨net/pfvar.h⟩. -
DIOCGETTIMEOUT
struct pfioc_tm *pt - Get the state timeout of timeout. The value will be placed into the seconds field.
DIOCCLRRULECTRS
- Clear per-rule statistics.
-
DIOCSETLIMIT
struct pfioc_limit *pl - Set the hard limits on the memory pools used by the packet filter.
-
DIOCGETLIMIT
struct pfioc_limit *pl - Get the hard limit for the memory pool indicated by index.
-
DIOCRCLRTABLES
struct pfioc_table *io - Clear all tables. All the ioctls that manipulate radix
tables use the same structure described below. For
DIOCRCLRTABLES
, pfrio_ndel contains on exit the number of tables deleted. -
DIOCRADDTABLES
struct pfioc_table *io - Create one or more tables. On entry, pfrio_buffer must point to an array of struct pfr_table containing at least pfrio_size elements. pfrio_esize must be the size of struct pfr_table. On exit, pfrio_nadd contains the number of tables effectively created.
-
DIOCRDELTABLES
struct pfioc_table *io - Delete one or more tables. On entry, pfrio_buffer must point to an array of struct pfr_table containing at least pfrio_size elements. pfrio_esize must be the size of struct pfr_table. On exit, pfrio_ndel contains the number of tables effectively deleted.
-
DIOCRGETTABLES
struct pfioc_table *io - Get the list of all tables. On entry, pfrio_buffer[pfrio_size] contains a valid writeable buffer for pfr_table structures. On exit, pfrio_size contains the number of tables written into the buffer. If the buffer is too small, the kernel does not store anything but just returns the required buffer size, without error.
-
DIOCRGETTSTATS
struct pfioc_table *io - This call is like
DIOCRGETTABLES
but is used to get an array of pfr_tstats structures. -
DIOCRCLRTSTATS
struct pfioc_table *io - Clear the statistics of one or more tables. On entry, pfrio_buffer must point to an array of struct pfr_table containing at least pfrio_size elements. pfrio_esize must be the size of struct pfr_table. On exit, pfrio_nzero contains the number of tables effectively cleared.
-
DIOCRCLRADDRS
struct pfioc_table *io - Clear all addresses in a table. On entry, pfrio_table contains the table to clear. On exit, pfrio_ndel contains the number of addresses removed.
-
DIOCRADDADDRS
struct pfioc_table *io - Add one or more addresses to a table. On entry, pfrio_table contains the table ID and pfrio_buffer must point to an array of struct pfr_addr containing at least pfrio_size elements to add to the table. pfrio_esize must be the size of struct pfr_addr. On exit, pfrio_nadd contains the number of addresses effectively added.
-
DIOCRDELADDRS
struct pfioc_table *io - Delete one or more addresses from a table. On entry, pfrio_table contains the table ID and pfrio_buffer must point to an array of struct pfr_addr containing at least pfrio_size elements to delete from the table. pfrio_esize must be the size of struct pfr_addr. On exit, pfrio_ndel contains the number of addresses effectively deleted.
-
DIOCRSETADDRS
struct pfioc_table *io - Replace the content of a table by a new address list. This
is the most complicated command, which uses all the structure members.
On entry, pfrio_table contains the table ID
and pfrio_buffer must point to an array
of struct pfr_addr containing at least
pfrio_size elements which become the new
contents of the table. pfrio_esize must
be the size of struct pfr_addr.
Additionally, if pfrio_size2 is non-zero,
pfrio_buffer[pfrio_size..pfrio_size2]
must be a writeable buffer, into which the kernel can copy the addresses
that have been deleted during the replace operation. On exit,
pfrio_ndel,
pfrio_nadd, and
pfrio_nchange contain the number of
addresses deleted, added, and changed by the kernel. If
pfrio_size2 was set on entry,
pfrio_size2 will point to the size of the
buffer used, exactly like
DIOCRGETADDRS
. -
DIOCRGETADDRS
struct pfioc_table *io - Get all the addresses of a table. On entry, pfrio_table contains the table ID and pfrio_buffer[pfrio_size] contains a valid writeable buffer for pfr_addr structures. On exit, pfrio_size contains the number of addresses written into the buffer. If the buffer was too small, the kernel does not store anything but just returns the required buffer size, without returning an error.
-
DIOCRGETASTATS
struct pfioc_table *io - This call is like
DIOCRGETADDRS
but is used to get an array of pfr_astats structures. -
DIOCRCLRASTATS
struct pfioc_table *io - Clear the statistics of one or more addresses. On entry, pfrio_table contains the table ID and pfrio_buffer must point to an array of struct pfr_addr containing at least pfrio_size elements to be cleared from the table. pfrio_esize must be the size of struct pfr_addr. On exit, pfrio_nzero contains the number of addresses effectively cleared.
-
DIOCRTSTADDRS
struct pfioc_table *io - Test if the given addresses match a table. On entry, pfrio_table contains the table ID and pfrio_buffer must point to an array of struct pfr_addr containing at least pfrio_size elements, each of which will be tested for a match in the table. pfrio_esize must be the size of struct pfr_addr. On exit, the kernel updates the pfr_addr array by setting the pfra_fback member appropriately.
-
DIOCRSETTFLAGS
struct pfioc_table *io - Change the
PFR_TFLAG_CONST
orPFR_TFLAG_PERSIST
flags of a table. On entry, pfrio_buffer must point to an array of struct pfr_table containing at least pfrio_size elements. pfrio_esize must be the size of struct pfr_table. pfrio_setflag must contain the flags to add, while pfrio_clrflag must contain the flags to remove. On exit, pfrio_nchange and pfrio_ndel contain the number of tables altered or deleted by the kernel. Yes, tables can be deleted if one removes thePFR_TFLAG_PERSIST
flag of an unreferenced table. -
DIOCRINADEFINE
struct pfioc_table *io - Defines a table in the inactive set. On entry, pfrio_table contains the table ID and pfrio_buffer[pfrio_size] contains an array of pfr_addr structures to put in the table. A valid ticket must also be supplied to pfrio_ticket. On exit, pfrio_nadd contains 0 if the table was already defined in the inactive list or 1 if a new table has been created. pfrio_naddr contains the number of addresses effectively put in the table.
-
DIOCXBEGIN
struct pfioc_trans *io -
Clear all the inactive rulesets specified in the
pfioc_trans_e array. For each ruleset, a
ticket is returned for subsequent "add rule" ioctls, as well as
for the
DIOCXCOMMIT
andDIOCXROLLBACK
calls. Ruleset types, identified by rs_num, include the following: -
DIOCXCOMMIT
struct pfioc_trans *io - Atomically switch a vector of inactive rulesets to the
active rulesets. This call is implemented as a standard two-phase commit,
which will either fail for all rulesets or completely succeed. All tickets
need to be valid. This ioctl returns
EBUSY
if another process is concurrently updating some of the same rulesets. -
DIOCXROLLBACK
struct pfioc_trans *io - Clean up the kernel by undoing all changes that have taken
place on the inactive rulesets since the last
DIOCXBEGIN
.DIOCXROLLBACK
will silently ignore rulesets for which the ticket is invalid. -
DIOCSETHOSTID
u_int32_t *hostid - Set the host ID, which is used by pfsync(4) to identify which host created state table entries.
DIOCOSFPFLUSH
- Flush the passive OS fingerprint table.
-
DIOCOSFPADD
struct pf_osfp_ioctl *io -
Add a passive OS fingerprint to the table. Set
fp_os.fp_os to the packed fingerprint,
fp_os.fp_class_nm to the name of the
class (Linux, Windows, etc),
fp_os.fp_version_nm to the name of the
version (NT, 95, 98), and
fp_os.fp_subtype_nm to the name of the
subtype or patchlevel. The members
fp_mss,
fp_wsize,
fp_psize,
fp_ttl,
fp_optcnt, and
fp_wscale are set to the TCP MSS, the TCP
window size, the IP length, the IP TTL, the number of TCP options, and the
TCP window scaling constant of the TCP SYN packet, respectively.
The fp_flags member is filled according to
the ⟨net/pfvar.h⟩ include file
PF_OSFP_*
defines. The fp_tcpopts member contains packed TCP options. Each option usesPF_OSFP_TCPOPT_BITS
bits in the packed value. Options include any ofPF_OSFP_TCPOPT_NOP
,PF_OSFP_TCPOPT_SACK
,PF_OSFP_TCPOPT_WSCALE
,PF_OSFP_TCPOPT_MSS
, orPF_OSFP_TCPOPT_TS
. The fp_getnum member is not used with this ioctl. The structure's slack space must be zeroed for correct operation; memset(3) the whole structure to zero before filling and sending to the kernel. -
DIOCOSFPGET
struct pf_osfp_ioctl *io - Get the passive OS fingerprint number
fp_getnum from the kernel's fingerprint
list. The rest of the structure members will come back filled. Get the
whole list by repeatedly incrementing the
fp_getnum number until the ioctl returns
EBUSY
. -
DIOCGETSRCNODES
struct pfioc_src_nodes *psn - Get the list of source nodes kept by sticky addresses and source tracking. The ioctl must be called once with psn_len set to 0. If the ioctl returns without error, psn_len will be set to the size of the buffer required to hold all the pf_src_node structures held in the table. A buffer of this size should then be allocated, and a pointer to this buffer placed in psn_buf. The ioctl must then be called again to fill this buffer with the actual source node data. After that call, psn_len will be set to the length of the buffer actually used.
DIOCCLRSRCNODES
- Clear the tree of source tracking nodes.
-
DIOCIGETIFACES
struct pfioc_iface *io - Get the list of interfaces and interface drivers known to
pf. All the ioctls that manipulate interfaces
use the same structure described below:
If not empty, pfiio_name can be used to
restrict the search to a specific interface or driver.
pfiio_buffer[pfiio_size] is the
user-supplied buffer for returning the data. On entry,
pfiio_size contains the number of
pfi_kif entries that can fit into the
buffer. The kernel will replace this value by the real number of entries
it wants to return. pfiio_esize should be
set to
sizeof(struct pfi_kif)
. The data is returned in the pfi_kif structure described below: -
DIOCSETIFFLAG
struct pfioc_iface *io - Set the user settable flags (described above) of the
pf internal interface description. The
filtering process is the same as for
DIOCIGETIFACES
. -
DIOCCLRIFFLAG
struct pfioc_iface *io - Works as
DIOCSETIFFLAG
above but clears the flags. -
DIOCKILLSRCNODES
struct pfioc_iface *io - Explicitly remove source tracking nodes.
FILES
- /dev/pf
- packet filtering device.
EXAMPLES
The following example demonstrates how to use theDIOCNATLOOK
command to find the internal
host/port of a NATed connection:
#include <sys/types.h> #include <sys/socket.h> #include <sys/ioctl.h> #include <sys/fcntl.h> #include <net/if.h> #include <netinet/in.h> #include <net/pfvar.h> #include <err.h> #include <stdio.h> #include <stdlib.h> u_int32_t read_address(const char *s) { int a, b, c, d; sscanf(s, "%i.%i.%i.%i", &a, &b, &c, &d); return htonl(a << 24 | b << 16 | c << 8 | d); } void print_address(u_int32_t a) { a = ntohl(a); printf("%d.%d.%d.%d", a >> 24 & 255, a >> 16 & 255, a >> 8 & 255, a & 255); } int main(int argc, char *argv[]) { struct pfioc_natlook nl; int dev; if (argc != 5) { printf("%s <gwy addr> <gwy port> <ext addr> <ext port>\n", argv[0]); return 1; } dev = open("/dev/pf", O_RDWR); if (dev == -1) err(1, "open(\"/dev/pf\") failed"); memset(&nl, 0, sizeof(struct pfioc_natlook)); nl.saddr.v4.s_addr = read_address(argv[1]); nl.sport = htons(atoi(argv[2])); nl.daddr.v4.s_addr = read_address(argv[3]); nl.dport = htons(atoi(argv[4])); nl.af = AF_INET; nl.proto = IPPROTO_TCP; nl.direction = PF_IN; if (ioctl(dev, DIOCNATLOOK, &nl)) err(1, "DIOCNATLOOK"); printf("internal host "); print_address(nl.rsaddr.v4.s_addr); printf(":%u\n", ntohs(nl.rsport)); return 0; }
SEE ALSO
ioctl(2), altq(4), if_bridge(4), pflog(4), pfsync(4), pfctl(8), altq(9)HISTORY
The pf packet filtering mechanism first appeared in OpenBSD 3.0 and then FreeBSD 5.2. This implementation is derived from OpenBSD 4.5. It has been heavily modified to be capable of running in multithreaded FreeBSD kernel and scale its performance on multiple CPUs.August 5, 2018 | Debian |