NAME
random — the entropy deviceSYNOPSIS
device randomoptions RANDOM_LOADABLE
options RANDOM_ENABLE_UMA
DESCRIPTION
The random device returns an endless supply of random bytes when read. It also accepts and reads data as any ordinary file. The generator will start in an unseeded state, and will block reads until it is seeded for the first time. This may cause trouble at system boot when keys and the like are generated from random so steps should be taken to ensure a seeding as soon as possible. It is also possible to read random bytes by using the KERN_ARND sysctl. On the command line this could be done bysysctl -x -B 16 kern.arandom
sysctl kern.random
kern.random.fortuna.minpoolsize: 64 kern.random.harvest.mask_symbolic: [HIGH_PERFORMANCE], ... ,CACHED kern.random.harvest.mask_bin: 00111111111 kern.random.harvest.mask: 511 kern.random.random_sources: 'Intel Secure Key RNG'
kern.random.fortuna.minpoolsize
kern.random.harvest.mask
RANDOMNESS
The use of randomness in the field of computing is a rather subtle issue because randomness means different things to different people. Consider generating a password randomly, simulating a coin tossing experiment or choosing a random back-off period when a server does not respond. Each of these tasks requires random numbers, but the random numbers in each case have different requirements. Generation of passwords, session keys and the like requires cryptographic randomness. A cryptographic random number generator should be designed so that its output is difficult to guess, even if a lot of auxiliary information is known (such as when it was seeded, subsequent or previous output, and so on). On FreeBSD, seeding for cryptographic random number generators is provided by the random device, which provides real randomness. The arc4random(3) library call provides a pseudo-random sequence which is generally reckoned to be suitable for simple cryptographic use. The OpenSSL library also provides functions for managing randomness via functions such as RAND_bytes(3) and RAND_add(3). Note that OpenSSL uses the random device for seeding automatically. Randomness for simulation is required in engineering or scientific software and games. The first requirement of these applications is that the random numbers produced conform to some well-known, usually uniform, distribution. The sequence of numbers should also appear numerically uncorrelated, as simulation often assumes independence of its random inputs. Often it is desirable to reproduce the results of a simulation exactly, so that if the generator is seeded in the same way, it should produce the same results. A peripheral concern for simulation is the speed of a random number generator. Another issue in simulation is the size of the state associated with the random number generator, and how frequently it repeats itself. For example, a program which shuffles a pack of cards should have 52! possible outputs, which requires the random number generator to have 52! starting states. This means the seed should have at least log_2(52!) ~ 226 bits of state if the program is to stand a chance of outputting all possible sequences, and the program needs some unbiased way of generating these bits. Again, the random device could be used for seeding here, but in practice, smaller seeds are usually considered acceptable. FreeBSD provides two families of functions which are considered suitable for simulation. The random(3) family of functions provides a random integer between 0 to (2**31)−1. The functions srandom(3), initstate(3) and setstate(3) are provided for deterministically setting the state of the generator and the function srandomdev(3) is provided for setting the state via the random device. The drand48(3) family of functions are also provided, which provide random floating point numbers in various ranges. Randomness that is used for collision avoidance (for example, in certain network protocols) has slightly different semantics again. It is usually expected that the numbers will be uniform, as this produces the lowest chances of collision. Here again, the seeding of the generator is very important, as it is required that different instances of the generator produce independent sequences. However, the guessability or reproducibility of the sequence is unimportant, unlike the previous cases. FreeBSD does also provide the traditional rand(3) library call, for compatibility purposes. However, it is known to be poor for simulation and absolutely unsuitable for cryptographic purposes, so its use is discouraged.FILES
- /dev/random
SEE ALSO
arc4random(3), drand48(3), rand(3), RAND_add(3), RAND_bytes(3), random(3), sysctl(8), random(9) Ferguson, Schneier, and Kohno, Cryptography Engineering, Wiley, ISBN 978-0-470-47424-2.HISTORY
A random device appeared in FreeBSD 2.2. The current software implementation, introduced in FreeBSD 10.0, is by Mark R V Murray, and is an implementation of the Fortuna algorithm by Ferguson et al. It replaces the previous Yarrow implementation, introduced in FreeBSD 5.0. The Yarrow algorithm is no longer supported by its authors, and is therefore no longer available.August 26, 2018 | Debian |