samtools - Utilities for the Sequence Alignment/Map (SAM) format
samtools addreplacerg -r 'ID:fish' -r 'LB:1334' -r 'SM:alpha' -o output.bam
input.bam
samtools ampliconclip -b bed.file input.bam
samtools ampliconstats primers.bed in.bam
samtools bedcov aln.sorted.bam
samtools calmd in.sorted.bam ref.fasta
samtools cat out.bam in1.bam in2.bam in3.bam
samtools collate -o aln.name_collated.bam aln.sorted.bam
samtools consensus -o out.fasta in.bam
samtools coverage aln.sorted.bam
samtools depad input.bam
samtools depth aln.sorted.bam
samtools dict -a GRCh38 -s "Homo sapiens" ref.fasta
samtools faidx ref.fasta
samtools fasta input.bam > output.fasta
samtools fastq input.bam > output.fastq
samtools fixmate in.namesorted.sam out.bam
samtools flags PAIRED,UNMAP,MUNMAP
samtools flagstat aln.sorted.bam
samtools fqidx ref.fastq
samtools head in.bam
samtools idxstats aln.sorted.bam
samtools import input.fastq > output.bam
samtools index aln.sorted.bam
samtools markdup in.algnsorted.bam out.bam
samtools merge out.bam in1.bam in2.bam in3.bam
samtools mpileup -C50 -f ref.fasta -r chr3:1,000-2,000 in1.bam in2.bam
samtools phase input.bam
samtools quickcheck in1.bam in2.cram
samtools reference -o ref.fa in.cram
samtools reheader in.header.sam in.bam > out.bam
samtools samples input.bam
samtools sort -T /tmp/aln.sorted -o aln.sorted.bam aln.bam
samtools split merged.bam
samtools stats aln.sorted.bam
samtools targetcut input.bam
samtools tview aln.sorted.bam ref.fasta
samtools view -bt ref_list.txt -o aln.bam aln.sam.gz
Samtools is a set of utilities that manipulate alignments in the SAM (Sequence
Alignment/Map), BAM, and CRAM formats. It converts between the formats, does
sorting, merging and indexing, and can retrieve reads in any regions swiftly.
Samtools is designed to work on a stream. It regards an input file `-' as the
standard input (stdin) and an output file `-' as the standard output (stdout).
Several commands can thus be combined with Unix pipes. Samtools always output
warning and error messages to the standard error output (stderr).
Samtools is also able to open files on remote FTP or HTTP(S) servers if the file
name starts with `ftp://', `http://', etc. Samtools checks the current working
directory for the index file and will download the index upon absence.
Samtools does not retrieve the entire alignment file unless it is asked to do
so.
If an index is needed, samtools looks for the index suffix appended to the
filename, and if that isn't found it tries again without the filename suffix
(for example
in.bam.bai followed by
in.bai). However if an index
is in a completely different location or has a different name, both the main
data filename and index filename can be pasted together with
##idx##.
For example
/data/in.bam##idx##/indices/in.bam.bai may be used to
explicitly indicate where the data and index files reside.
Each command has its own man page which can be viewed using e.g.
man
samtools-view or with a recent GNU man using
man samtools view.
Below we have a brief summary of syntax and sub-command description.
Options common to all sub-commands are documented below in the GLOBAL COMMAND
OPTIONS section.
- view
- samtools view [options]
in.sam|in.bam|in.cram [region...]
With no options or regions specified, prints all alignments in the specified
input alignment file (in SAM, BAM, or CRAM format) to standard output in
SAM format (with no header by default).
You may specify one or more space-separated region specifications after the
input filename to restrict output to only those alignments which overlap
the specified region(s). Use of region specifications requires a
coordinate-sorted and indexed input file.
Options exist to change the output format from SAM to BAM or CRAM, so this
command also acts as a file format conversion utility.
- tview
- samtools tview [-p chr:pos] [-s
STR] [-d display] <in.sorted.bam> [ref.fasta]
Text alignment viewer (based on the ncurses library). In the viewer, press
`?' for help and press `g' to check the alignment start from a region in
the format like `chr10:10,000,000' or `=10,000,000' when viewing the same
reference sequence.
- quickcheck
- samtools quickcheck [options]
in.sam|in.bam|in.cram [ ... ]
Quickly check that input files appear to be intact. Checks that beginning of
the file contains a valid header (all formats) containing at least one
target sequence and then seeks to the end of the file and checks that an
end-of-file (EOF) is present and intact (BAM only).
Data in the middle of the file is not read since that would be much more
time consuming, so please note that this command will not detect internal
corruption, but is useful for testing that files are not truncated before
performing more intensive tasks on them.
This command will exit with a non-zero exit code if any input files don't
have a valid header or are missing an EOF block. Otherwise it will exit
successfully (with a zero exit code).
- head
- samtools head [options]
in.sam|in.bam|in.cram
Prints the input file's headers and optionally also its first few alignment
records. This command always displays the headers as they are in the file,
never adding an extra @PG header itself.
- index
- samtools index [-bc] [-m INT]
aln.sam.gz|aln.bam|aln.cram [out.index]
Index a coordinate-sorted SAM, BAM or CRAM file for fast random access. Note
for SAM this only works if the file has been BGZF compressed first.
(Starting from Samtools 1.16, this command can also be given several
alignment filenames, which are indexed individually.)
This index is needed when region arguments are used to limit
samtools view and similar commands to particular regions of
interest.
If an output filename is given, the index file will be written to
out.index. Otherwise, for a CRAM file aln.cram, index file
aln.cram.crai will be created; for a BAM or SAM file
aln.bam, either aln.bam.bai or
aln.bam.csi will be created, depending on the index format
selected.
- sort
- samtools sort [-l level] [-m
maxMem] [-o out.bam] [-O format]
[-n] [-t tag] [-T tmpprefix] [-@
threads] [in.sam|in.bam|in.cram]
Sort alignments by leftmost coordinates, or by read name when -n is
used. An appropriate @HD-SO sort order header tag will be added or
an existing one updated if necessary.
The sorted output is written to standard output by default, or to the
specified file (out.bam) when -o is used. This command will
also create temporary files tmpprefix.%d.bam
as needed when the entire alignment data cannot fit into memory (as
controlled via the -m option).
Consider using samtools collate instead if you need name collated
data without a full lexicographical sort.
Note that if the sorted output file is to be indexed with samtools
index, the default coordinate sort must be used. Thus the -n
and -t options are incompatible with samtools index.
- collate
- samtools collate [options]
in.sam|in.bam|in.cram [<prefix>]
Shuffles and groups reads together by their names. A faster alternative to a
full query name sort, collate ensures that reads of the same name
are grouped together in contiguous groups, but doesn't make any guarantees
about the order of read names between groups.
The output from this command should be suitable for any operation that
requires all reads from the same template to be grouped together.
- idxstats
- samtools idxstats
in.sam|in.bam|in.cram
Retrieve and print stats in the index file corresponding to the input file.
Before calling idxstats, the input BAM file should be indexed by samtools
index.
If run on a SAM or CRAM file or an unindexed BAM file, this command will
still produce the same summary statistics, but does so by reading through
the entire file. This is far slower than using the BAM indices.
The output is TAB-delimited with each line consisting of reference sequence
name, sequence length, # mapped reads and # unmapped reads. It is written
to stdout.
- flagstat
- samtools flagstat
in.sam|in.bam|in.cram
Does a full pass through the input file to calculate and print statistics to
stdout.
Provides counts for each of 13 categories based primarily on bit flags in
the FLAG field. Each category in the output is broken down into QC pass
and QC fail, which is presented as "#PASS + #FAIL" followed by a
description of the category.
- flags
- samtools flags INT|STR[,...]
Convert between textual and numeric flag representation.
FLAGS:
0x1 |
PAIRED |
paired-end (or multiple-segment) sequencing technology |
0x2 |
PROPER_PAIR |
each segment properly aligned according to the aligner |
0x4 |
UNMAP |
segment unmapped |
0x8 |
MUNMAP |
next segment in the template unmapped |
0x10 |
REVERSE |
SEQ is reverse complemented |
0x20 |
MREVERSE |
SEQ of the next segment in the template is reverse complemented |
0x40 |
READ1 |
the first segment in the template |
0x80 |
READ2 |
the last segment in the template |
0x100 |
SECONDARY |
secondary alignment |
0x200 |
QCFAIL |
not passing quality controls |
0x400 |
DUP |
PCR or optical duplicate |
0x800 |
SUPPLEMENTARY |
supplementary alignment |
- stats
- samtools stats [options]
in.sam|in.bam|in.cram [region...]
samtools stats collects statistics from BAM files and outputs in a text
format. The output can be visualized graphically using plot-bamstats.
- bedcov
- samtools bedcov [options] region.bed
in1.sam|in1.bam|in1.cram[...]
Reports the total read base count (i.e. the sum of per base read depths) for
each genomic region specified in the supplied BED file. The regions are
output as they appear in the BED file and are 0-based. Counts for each
alignment file supplied are reported in separate columns.
- depth
- samtools depth [options]
[in1.sam|in1.bam|in1.cram
[in2.sam|in2.bam|in2.cram] [...]]
Computes the read depth at each position or region.
- ampliconstats
- samtools ampliconstats [options] primers.bed
in.sam|in.bam|in.cram[...]
samtools ampliconstats collects statistics from one or more input alignment
files and produces tables in text format. The output can be visualized
graphically using plot-ampliconstats.
The alignment files should have previously been clipped of primer sequence,
for example by samtools ampliconclip and the sites of these primers
should be specified as a bed file in the arguments.
- mpileup
- samtools mpileup [-EB] [-C capQcoef]
[-r reg] [-f in.fa] [-l list]
[-Q minBaseQ] [-q minMapQ] in.bam
[in2.bam [...]]
Generate textual pileup for one or multiple BAM files. For VCF and BCF
output, please use the bcftools mpileup command instead. Alignment
records are grouped by sample (SM) identifiers in @RG header lines. If
sample identifiers are absent, each input file is regarded as one sample.
See the samtools-mpileup man page for a description of the pileup format and
options.
- consensus
- samtools consensus [options] in.bam
Generate consensus from a SAM, BAM or CRAM file based on the contents of the
alignment records. The consensus is written either as FASTA, FASTQ, or a
pileup oriented format.
The default output for FASTA and FASTQ formats include one base per non-gap
consensus. Hence insertions with respect to the aligned reference will be
included and deletions removed. This behaviour can be adjusted.
Two consensus calling algorithms are offered. The default computes a
heterozygous consensus in a Bayesian manner, derived from the
"Gap5" consensus algorithm. A simpler base frequency counting
method is also available.
- reference
- samtools reference [options] in.bam
Generate a reference from a SAM, BAM or CRAM file based on the contents of
the SEQuence field and the MD:Z: auxiliary tags, or from the embedded
reference blocks within a CRAM file (provided it was constructed using the
embed_ref=1 option).
- coverage
- samtools coverage [options]
[in1.sam|in1.bam|in1.cram
[in2.sam|in2.bam|in2.cram] [...]]
Produces a histogram or table of coverage per chromosome.
- merge
- samtools merge [-nur1f] [-h inh.sam]
[-t tag] [-R reg] [-b list]
out.bam in1.bam [in2.bam in3.bam ...
inN.bam]
Merge multiple sorted alignment files, producing a single sorted output file
that contains all the input records and maintains the existing sort order.
If -h is specified the @SQ headers of input files will be merged into
the specified header, otherwise they will be merged into a composite
header created from the input headers. If the @SQ headers differ in order
this may require the output file to be re-sorted after merge.
The ordering of the records in the input files must match the usage of the
-n and -t command-line options. If they do not, the output
order will be undefined. See sort for information about record
ordering.
- split
- samtools split [options]
merged.sam|merged.bam|merged.cram
Splits a file by read group, producing one or more output files matching a
common prefix (by default based on the input filename) each containing one
read-group.
- cat
- samtools cat [-b list] [-h
header.sam] [-o out.bam] in1.bam
in2.bam [ ... ]
Concatenate BAMs or CRAMs. Although this works on either BAM or CRAM, all
input files must be the same format as each other. The sequence dictionary
of each input file must be identical, although this command does not check
this. This command uses a similar trick to reheader which enables
fast BAM concatenation.
- import
- samtools import [options] in.fastq [ ... ]
Converts one or more FASTQ files to unaligned SAM, BAM or CRAM. These
formats offer a richer capability of tracking sample meta-data via the SAM
header and per-read meta-data via the auxiliary tags. The fastq
command may be used to reverse this conversion.
- fastq/a
- samtools fastq [options] in.bam
samtools fasta [options] in.bam
Converts a BAM or CRAM into either FASTQ or FASTA format depending on the
command invoked. The files will be automatically compressed if the file
names have a .gz or .bgzf extension.
The input to this program must be collated by name. Use samtools
collate or samtools sort -n to ensure this.
- faidx
- samtools faidx <ref.fasta> [region1 [...]]
Index reference sequence in the FASTA format or extract subsequence from
indexed reference sequence. If no region is specified, faidx will
index the file and create <ref.fasta>.fai on the disk. If
regions are specified, the subsequences will be retrieved and printed to
stdout in the FASTA format.
The input file can be compressed in the BGZF format.
FASTQ files can be read and indexed by this command. Without using
--fastq any extracted subsequence will be in FASTA format.
- fqidx
- samtools fqidx <ref.fastq> [region1 [...]]
Index reference sequence in the FASTQ format or extract subsequence from
indexed reference sequence. If no region is specified, fqidx will
index the file and create <ref.fastq>.fai on the disk. If
regions are specified, the subsequences will be retrieved and printed to
stdout in the FASTQ format.
The input file can be compressed in the BGZF format.
samtools fqidx should only be used on fastq files with a small number
of entries. Trying to use it on a file containing millions of short
sequencing reads will produce an index that is almost as big as the
original file, and searches using the index will be very slow and use a
lot of memory.
- dict
- samtools dict ref.fasta|ref.fasta.gz
Create a sequence dictionary file from a fasta file.
- calmd
- samtools calmd [-Eeubr] [-C capQcoef]
aln.bam ref.fasta
Generate the MD tag. If the MD tag is already present, this command will
give a warning if the MD tag generated is different from the existing tag.
Output SAM by default.
Calmd can also read and write CRAM files although in most cases it is
pointless as CRAM recalculates MD and NM tags on the fly. The one
exception to this case is where both input and output CRAM files have been
/ are being created with the no_ref option.
- fixmate
- samtools fixmate [-rpcm] [-O format]
in.nameSrt.bam out.bam
Fill in mate coordinates, ISIZE and mate related flags from a name-sorted
alignment.
- markdup
- samtools markdup [-l length] [-r]
[-s] [-T] [-S] in.algsort.bam out.bam
Mark duplicate alignments from a coordinate sorted file that has been run
through samtools fixmate with the -m option. This program
relies on the MC and ms tags that fixmate provides.
- rmdup
- samtools rmdup [-sS] <input.srt.bam> <out.bam>
This command is obsolete. Use markdup instead.
- addreplacerg
- samtools addreplacerg [-r rg-line | -R
rg-ID] [-m mode] [-l level] [-o
out.bam] in.bam
Adds or replaces read group tags in a file.
- reheader
- samtools reheader [-iP] in.header.sam in.bam
Replace the header in in.bam with the header in in.header.sam.
This command is much faster than replacing the header with a
BAM→SAM→BAM conversion.
By default this command outputs the BAM or CRAM file to standard output
(stdout), but for CRAM format files it has the option to perform an
in-place edit, both reading and writing to the same file. No validity
checking is performed on the header, nor that it is suitable to use with
the sequence data itself.
- targetcut
- samtools targetcut [-Q minBaseQ] [-i
inPenalty] [-0 em0] [-1 em1] [-2
em2] [-f ref] in.bam
This command identifies target regions by examining the continuity of read
depth, computes haploid consensus sequences of targets and outputs a SAM
with each sequence corresponding to a target. When option -f is in
use, BAQ will be applied. This command is only designed for cutting
fosmid clones from fosmid pool sequencing [Ref. Kitzman et al. (2010)].
- phase
- samtools phase [-AF] [-k len]
[-b prefix] [-q minLOD] [-Q
minBaseQ] in.bam
Call and phase heterozygous SNPs.
- depad
- samtools depad [-SsCu1] [-T ref.fa]
[-o output] in.bam
Converts a BAM aligned against a padded reference to a BAM aligned against
the depadded reference. The padded reference may contain verbatim
"*" bases in it, but "*" bases are also counted in the
reference numbering. This means that a sequence base-call aligned against
a reference "*" is considered to be a cigar match ("M"
or "X") operator (if the base-call is "A",
"C", "G" or "T"). After depadding the
reference "*" bases are deleted and such aligned sequence
base-calls become insertions. Similarly transformations apply for
deletions and padding cigar operations.
- ampliconclip
- samtools ampliconclip [-o out.file]
[-f stat.file] [--soft-clip] [--hard-clip]
[--both-ends] [--strand] [--clipped] [--fail]
[--no-PG] -b bed.file in.file
Clip reads in a SAM compatible file based on data from a BED file.
- samples
- samtools samples [-o out.file] [-i]
[-T TAG] [-f refs.fasta] [-F
refs_list] [-X]
Prints the samples from alignment files
These are options that are passed after the
samtools command, before any
sub-command is specified.
-
help, --help
- Display a brief usage message listing the samtools commands
available. If the name of a command is also given, e.g.,
samtools help view, the detailed usage message for
that particular command is displayed.
- --version
- Display the version numbers and copyright information for
samtools and the important libraries used by samtools.
- --version-only
- Display the full samtools version number in a
machine-readable format.
Several long-options are shared between multiple samtools sub-commands:
--input-fmt,
--input-fmt-option,
--output-fmt,
--output-fmt-option,
--reference,
--write-index, and
--verbosity. The input format is typically auto-detected so specifying
the format is usually unnecessary and the option is included for completeness.
Note that not all subcommands have all options. Consult the subcommand help
for more details.
Format strings recognised are "sam", "sam.gz",
"bam" and "cram". They may be followed by a comma
separated list of options as
key or
key=
value. See below
for examples.
The
fmt-option arguments accept either a single
option or
option=
value. Note that some options only work on some file
formats and only on read or write streams. If value is unspecified for a
boolean option, the value is assumed to be 1. The valid options are as
follows.
-
level=INT
- Output only. Specifies the compression level from 1 to 9,
or 0 for uncompressed. If the output format is SAM, this also enables BGZF
compression, otherwise SAM defaults to uncompressed.
-
nthreads=INT
- Specifies the number of threads to use during encoding
and/or decoding. For BAM this will be encoding only. In CRAM the threads
are dynamically shared between encoder and decoder.
-
filter=STRING
- Apply filter STRING to all incoming records, rejecting any
that do not satisfy the expression. See the FILTER EXPRESSIONS section
below for specifics.
-
reference=fasta_file
- Specifies a FASTA reference file for use in CRAM encoding
or decoding. It usually is not required for decoding except in the
situation of the MD5 not being obtainable via the REF_PATH or REF_CACHE
environment variables.
-
decode_md=0|1
- CRAM input only; defaults to 1 (on). CRAM does not
typically store MD and NM tags, preferring to generate them on the fly.
When this option is 0 missing MD, NM tags will not be generated. It can be
particularly useful when combined with a file encoded using store_md=1 and
store_nm=1.
-
store_md=0|1
- CRAM output only; defaults to 0 (off). CRAM normally only
stores MD tags when the reference is unknown and lets the decoder generate
these values on-the-fly (see decode_md).
-
store_nm=0|1
- CRAM output only; defaults to 0 (off). CRAM normally only
stores NM tags when the reference is unknown and lets the decoder generate
these values on-the-fly (see decode_md).
-
ignore_md5=0|1
- CRAM input only; defaults to 0 (off). When enabled, md5
checksum errors on the reference sequence and block checksum errors within
CRAM are ignored. Use of this option is strongly discouraged.
-
required_fields=bit-field
- CRAM input only; specifies which SAM columns need to be
populated. By default all fields are used. Limiting the decode to specific
columns can have significant performance gains. The bit-field is a
numerical value constructed from the following table.
0x1 |
SAM_QNAME |
0x2 |
SAM_FLAG |
0x4 |
SAM_RNAME |
0x8 |
SAM_POS |
0x10 |
SAM_MAPQ |
0x20 |
SAM_CIGAR |
0x40 |
SAM_RNEXT |
0x80 |
SAM_PNEXT |
0x100 |
SAM_TLEN |
0x200 |
SAM_SEQ |
0x400 |
SAM_QUAL |
0x800 |
SAM_AUX |
0x1000 |
SAM_RGAUX |
-
name_prefix=string
- CRAM input only; defaults to output filename. Any sequences
with auto-generated read names will use string as the name
prefix.
-
multi_seq_per_slice=0|1
- CRAM output only; defaults to 0 (off). By default CRAM
generates one container per reference sequence, except in the case of many
small references (such as a fragmented assembly).
-
version=major.minor
- CRAM output only. Specifies the CRAM version number.
Acceptable values are "2.1" and "3.0".
-
seqs_per_slice=INT
- CRAM output only; defaults to 10000.
-
slices_per_container=INT
- CRAM output only; defaults to 1. The effect of having
multiple slices per container is to share the compression header block
between multiple slices. This is unlikely to have any significant impact
unless the number of sequences per slice is reduced. (Together these two
options control the granularity of random access.)
-
embed_ref=0|1
- CRAM output only; defaults to 0 (off). If 1, this will
store portions of the reference sequence in each slice, permitting decode
without having requiring an external copy of the reference sequence.
-
no_ref=0|1
- CRAM output only; defaults to 0 (off). If 1, sequences will
be stored verbatim with no reference encoding. This can be useful if no
reference is available for the file.
-
use_bzip2=0|1
- CRAM output only; defaults to 0 (off). Permits use of bzip2
in CRAM block compression.
-
use_lzma=0|1
- CRAM output only; defaults to 0 (off). Permits use of lzma
in CRAM block compression.
-
use_fqz=0|1
- CRAM ≥ 3.1 output only; enables and disables the
fqzcomp quality compression method. This is on by default for version 3.1
and above only when the small and archive profiles are in use.
-
use_tok=0|1
- CRAM ≥ 3.1 output only; enables and disables the
namne tokeniser compression method. This is on by default for version 3.1
and above.
-
lossy_names=0|1
- CRAM output only; defaults to 0 (off). If 1, templates with
all members within the same CRAM slice will have their read names removed.
New names will be automatically generated during decoding. Also see the
name_prefix option.
- fast, normal, small, archive
- CRAM output only. Set the CRAM compression profile. This is
a simplified way of setting many output options at once. It changes the
following options according to the profile in use. The "normal"
profile is the default.
Option |
fast |
normal |
small |
archive |
level |
1 |
5 |
6 |
7 |
use_bzip2 |
off |
off |
on |
on |
use_lzma |
off |
off |
off |
on if level>7 |
use_tok(*) |
off |
on |
on |
on |
use_fqz(*) |
off |
off |
on |
on |
use_arith(*) |
off |
off |
off |
on |
seqs_per_slice |
10000 |
10000 |
25000 |
100000 |
(*) use_tok, use_fqz and use_arith are only enabled for
CRAM version 3.1 and above.
The level listed is only the default value, and will not be set if it
has been explicitly changed already. Additionally bases_per_slice
is set to 500*seqs_per_slice unless previously explicitly set.
For example:
samtools view --input-fmt-option decode_md=0
--output-fmt cram,version=3.0 --output-fmt-option embed_ref
--output-fmt-option seqs_per_slice=2000 -o foo.cram foo.bam
samtools view -O cram,small -o bar.cram bar.bam
The
--write-index option enables automatic index creation while writing
out BAM, CRAM or bgzf SAM files. Note to get compressed SAM as the output
format you need to manually request a compression level, otherwise all SAM
files are uncompressed. By default SAM and BAM will use CSI indices while CRAM
will use CRAI indices. If you need to create BAI indices note that it is
possible to specify the name of the index being written to, and hence the
format, by using the
filename##idx##indexname notation.
For example: to convert a BAM to a compressed SAM with CSI indexing:
samtools view -h -O sam,level=6 --write-index in.bam -o out.sam.gz
To convert a SAM to a compressed BAM using BAI indexing:
samtools view --write-index in.sam -o out.bam##idx##out.bam.bai
The
--verbosity INT option sets the verbosity level for samtools
and HTSlib. The default is 3 (HTS_LOG_WARNING); 2 reduces warning messages and
0 or 1 also reduces some error messages, while values greater than 3 produce
increasing numbers of additional warnings and logging messages.
The CRAM format requires use of a reference sequence for both reading and
writing.
When reading a CRAM the
@SQ headers are interrogated to identify the
reference sequence MD5sum (
M5: tag) and the local reference sequence
filename (
UR: tag). Note that
http:// and
ftp:// based
URLs in the UR: field are not used, but local fasta filenames (with or without
file://) can be used.
To create a CRAM the
@SQ headers will also be read to identify the
reference sequences, but M5: and UR: tags may not be present. In this case the
-T and
-t options of samtools view may be used to specify the
fasta or fasta.fai filenames respectively (provided the .fasta.fai file is
also backed up by a .fasta file).
The search order to obtain a reference is:
- 1.
- Use any local file specified by the command line options
(eg -T).
- 2.
- Look for MD5 via REF_CACHE environment variable.
- 3.
- Look for MD5 in each element of the REF_PATH environment
variable.
- 4.
- Look for a local file listed in the UR: header tag.
Filter expressions are used as an on-the-fly checking of incoming SAM, BAM or
CRAM records, discarding records that do not match the specified expression.
The language used is primarily C style, but with a few differences in the
precedence rules for bit operators and the inclusion of regular expression
matching.
The operator precedence, from strongest binding to weakest, is:
Grouping |
(, ) |
E.g. "(1+2)*3" |
Values: |
literals, vars |
Numbers, strings and variables |
Unary ops: |
+, -, !, ~ |
E.g. -10 +10, !10 (not), ~5 (bit not) |
Math ops: |
*, /, % |
Multiply, division and (integer) modulo |
Math ops: |
+, - |
Addition / subtraction |
Bit-wise: |
& |
Integer AND |
Bit-wise |
^ |
Integer XOR |
Bit-wise |
| |
Integer OR |
Conditionals: |
>, >=, <, <= |
|
Equality: |
==, !=, =~, !~ |
=~ and !~ match regular expressions |
Boolean: |
&&, || |
Logical AND / OR |
Expressions are computed using floating point mathematics, so "10 / 4"
evaluates to 2.5 rather than 2. They may be written as integers in decimal or
"0x" plus hexadecimal, and floating point with or without
exponents.However operations that require integers first do an implicit type
conversion, so "7.9 % 5" is 2 and "7.9 & 4.1" is
equivalent to "7 & 4", which is 4. Strings are always specified
using double quotes. To get a double quote in a string, use backslash.
Similarly a double backslash is used to get a literal backslash. For example
ab\"c\\d is the string
ab"c\d.
Comparison operators are evaluated as a match being 1 and a mismatch being 0,
thus "(2 > 1) + (3 < 5)" evaluates as 2. All comparisons
involving undefined (null) values are deemed to be false.
The variables are where the file format specifics are accessed from the
expression. The variables correspond to SAM fields, for example to find paired
alignments with high mapping quality and a very large insert size, we may use
the expression "
mapq >= 30 && (tlen >= 100000 || tlen
<= -100000)". Valid variable names and their data types are:
endpos |
int |
Alignment end position (1-based) |
flag |
int |
Combined FLAG field |
flag.paired |
int |
Single bit, 0 or 1 |
flag.proper_pair |
int |
Single bit, 0 or 2 |
flag.unmap |
int |
Single bit, 0 or 4 |
flag.munmap |
int |
Single bit, 0 or 8 |
flag.reverse |
int |
Single bit, 0 or 16 |
flag.mreverse |
int |
Single bit, 0 or 32 |
flag.read1 |
int |
Single bit, 0 or 64 |
flag.read2 |
int |
Single bit, 0 or 128 |
flag.secondary |
int |
Single bit, 0 or 256 |
flag.qcfail |
int |
Single bit, 0 or 512 |
flag.dup |
int |
Single bit, 0 or 1024 |
flag.supplementary |
int |
Single bit, 0 or 2048 |
library |
string |
Library (LB header via RG) |
mapq |
int |
Mapping quality |
mpos |
int |
Synonym for pnext |
mrefid |
int |
Mate reference number (0 based) |
mrname |
string |
Synonym for rnext |
ncigar |
int |
Number of cigar operations |
pnext |
int |
Mate's alignment position (1-based) |
pos |
int |
Alignment position (1-based) |
qlen |
int |
Alignment length: no. query bases |
qname |
string |
Query name |
qual |
string |
Quality values (raw, 0 based) |
refid |
int |
Integer reference number (0 based) |
rlen |
int |
Alignment length: no. reference bases |
rname |
string |
Reference name |
rnext |
string |
Mate's reference name |
sclen |
int |
Number of soft-clipped bases |
seq |
string |
Sequence |
tlen |
int |
Template length (insert size) |
[XX] |
int / string |
XX tag value |
Flags are returned either as the whole flag value or by checking for a single
bit. Hence the filter expression
flag.dup is equivalent to
flag
& 1024.
"qlen" and "rlen" are measured using the CIGAR string to
count the number of query (sequence) and reference bases consumed. Note
"qlen" may not exactly match the length of the "seq" field
if the sequence is "*". "sclen" is the number of
soft-clipped bases. When combined in "qlen-sclen" it can give the
number of sequence bases used in the alignment, distinguishing between global
alignment and local alignment length.
"endpos" is the (1-based inclusive) position of the rightmost mapped
base of the read, as measured using the CIGAR string, and for mapped reads is
equivalent to "pos+rlen-1". For unmapped reads, it is the same as
"pos".
Reference names may be matched either by their string forms ("rname"
and "mrname") or as the Nth
@SQ line (counting from zero) as
stored in BAM using "tid" and "mtid" respectively.
Auxiliary tags are described in square brackets and these expand to either
integer or string as defined by the tag itself (
XX:Z:string or
XX:i:int). For example
[NM]>=10 can be used to look
for alignments with many mismatches and
[RG]=~"grp[ABC]-"
will match the read-group string.
If no comparison is used with an auxiliary tag it is taken simply to be a test
for the existence of that tag. So
[NM] will return any record
containing an NM tag, even if that tag is zero (
NM:i:0). In htslib
<= 1.15 negating this with
![NM] gave misleading results as it was
true if the tag did not exist or did exist but was zero. Now this is strictly
does-not-exist. An explicit
exists([NM]) and
!exists([NM])
function has also been added to make this intention clear.
Similarly in htslib <= 1.15 using
[NM]!=0 was true both when the tag
existed and was not zero as well as when the tag did not exist. From 1.16
onwards all comparison operators are only true for tags that exist, so
[NM]!=0 works as expected.
Some simple functions are available to operate on strings. These treat the
strings as arrays of bytes, permitting their length, minimum, maximum and
average values to be computed. These are useful for processing Quality Scores.
length(x) |
Length of the string (excluding nul char) |
min(x) |
Minimum byte value in the string |
max(x) |
Maximum byte value in the string |
avg(x) |
Average byte value in the string |
Note that "avg" is a floating point value and it may be NAN for empty
strings. This means that "avg(qual)" does not produce an error for
records that have both seq and qual of "*". NAN values will fail any
conditional checks, so e.g. "avg(qual) > 20" works and will not
report these records. NAN also fails all equality, < and > comparisons,
and returns zero when given as an argument to the
exists function. It
can be negated with
!x in which case it becomes true.
Functions that operate on both strings and numerics:
exists(x) |
True if the value exists (or is explicitly true). |
default(x,d) |
Value x if it exists or d if not. |
Functions that apply only to numeric values:
sqrt(x) |
Square root of x
|
log(x) |
Natural logarithm of x
|
pow(x, y) |
Power function, x to the power of y
|
exp(x) |
Base-e exponential, equivalent to pow(e,x)
|
- HTS_PATH
- A colon-separated list of directories in which to search
for HTSlib plugins. If $HTS_PATH starts or ends with a colon or contains a
double colon ( ::), the built-in list of directories is searched at
that point in the search.
If no HTS_PATH variable is defined, the built-in list of directories
specified when HTSlib was built is used, which typically includes
/usr/local/libexec/htslib and similar directories.
- REF_PATH
- A colon separated (semi-colon on Windows) list of locations
in which to look for sequences identified by their MD5sums. This can be
either a list of directories or URLs. Note that if a URL is included then
the colon in http:// and ftp:// and the optional port number will be
treated as part of the URL and not a PATH field separator. For URLs, the
text %s will be replaced by the MD5sum being read.
If no REF_PATH has been specified it will default to
http://www.ebi.ac.uk/ena/cram/md5/%s and if REF_CACHE is also
unset, it will be set to $XDG_CACHE_HOME/hts-ref/%2s/%2s/%s. If
$XDG_CACHE_HOME is unset, $HOME/.cache (or a local system
temporary directory if no home directory is found) will be used similarly.
- REF_CACHE
- This can be defined to a single location housing a local
cache of references. Upon downloading a reference it will be stored in the
location pointed to by REF_CACHE. REF_CACHE will be searched before
attempting to load via the REF_PATH search list. If no REF_PATH is
defined, both REF_PATH and REF_CACHE will be automatically set (see
above), but if REF_PATH is defined and REF_CACHE not then no local cache
is used.
To avoid many files being stored in the same directory, REF_CACHE may be
defined as a pattern using %nums to consume
num characters of the MD5sum and %s to consume all remaining
characters. If REF_CACHE lacks %s then it will get an implicit
/%s appended.
To aid population of the REF_CACHE directory a script
misc/seq_cache_populate.pl is provided in the Samtools
distribution. This takes a fasta file or a directory of fasta files and
generates the MD5sum named files.
For example if you use seq_cache_populate -subdirs 2 -root
/local/ref_cache to create 2 nested subdirectories (the default),
each consuming 2 characters of the MD5sum, then REF_CACHE must be set to
/local/ref_cache/%2s/%2s/%s.
- o
- Import SAM to BAM when @SQ lines are present in the
header:
samtools view -b aln.sam > aln.bam
If @SQ lines are absent:
samtools faidx ref.fa
samtools view -bt ref.fa.fai aln.sam > aln.bam
where ref.fa.fai is generated automatically by the faidx
command.
- o
- Convert a BAM file to a CRAM file using a local reference
sequence.
samtools view -C -T ref.fa aln.bam > aln.cram
Heng Li from the Sanger Institute wrote the original C version of samtools. Bob
Handsaker from the Broad Institute implemented the BGZF library. Petr Danecek
and Heng Li wrote the VCF/BCF implementation. James Bonfield from the Sanger
Institute developed the CRAM implementation. Other large code contributions
have been made by John Marshall, Rob Davies, Martin Pollard, Andrew Whitwham,
Valeriu Ohan (all while primarily at the Sanger Institute), with numerous
other smaller but valuable contributions. See the per-command manual pages for
further authorship.
samtools-addreplacerg(1),
samtools-ampliconclip(1),
samtools-ampliconstats(1),
samtools-bedcov(1),
samtools-calmd(1),
samtools-cat(1),
samtools-collate(1),
samtools-consensus(1),
samtools-coverage(1),
samtools-depad(1),
samtools-depth(1),
samtools-dict(1),
samtools-faidx(1),
samtools-fasta(1),
samtools-fastq(1),
samtools-fixmate(1),
samtools-flags(1),
samtools-flagstat(1),
samtools-fqidx(1),
samtools-head(1),
samtools-idxstats(1),
samtools-import(1),
samtools-index(1),
samtools-markdup(1),
samtools-merge(1),
samtools-mpileup(1),
samtools-phase(1),
samtools-quickcheck(1),
samtools-reference(1),
samtools-reheader(1),
samtools-rmdup(1),
samtools-sort(1),
samtools-split(1),
samtools-stats(1),
samtools-targetcut(1),
samtools-tview(1),
samtools-view(1),
bcftools(1),
sam(5),
tabix(1)
Samtools website: <
http://www.htslib.org/>
File format specification of SAM/BAM,CRAM,VCF/BCF:
<
http://samtools.github.io/hts-specs>
Samtools latest source: <
https://github.com/samtools/samtools>
HTSlib latest source: <
https://github.com/samtools/htslib>
Bcftools website: <
http://samtools.github.io/bcftools>